BLUE 3-6533-32-311BH, 2AH, 2BH, 3АН, 3BH, 4АН, \&4BH Ol\&GasWels Prelminary Drainage Report
 NWII4SWI/4 SECTION 34, TOWNSHIP 3 SOUTH, RANGE 65 WEST, $6^{T H}$ P.M

Approved For One Year From This Date	
City Engineer	Date
$\frac{\text { Water Department }}{}$	Date

Prepared For:

Crestone Peak Resources Operating, பC

Contact: Scott Farkas
34501 East Quincy Ave., Bldg. 1
Watkins, CO 80137
Phone: (970) 231-8688

Prepared By:
Uintah Engineering \& Land Surveying, பC
Christopher J. Clark, PE
85 South 200 East
Vernal, UT 84078
Phone: (435) 789-1017

TABLE OF CONTENTS:

I. Project Data

A. Introduction
B. Historic Drainage
C. Design Criteria
D. Drainage Plan
E. Conclusions
F. References
II. Appendix

```
Appendix A - Vicinity Map, Floodplain Map
Appendix B - NRCS Soil Type Map
Appendix C - USDCM Rainfall Intensity Maps
Appendix D - Offsite Drainage Plan
Appendix E - Drainage Basin Hydrology Calculations
Appendix F - Conveyance Hydraulic Calculations
Appendix G - Extended Detention Pond Calculations
```


I. PROJECT DATA

A. INTRODUCTION

The Blue 3-65 33-32-31 oil \& gas well site access road will connect to the existing access road to the Mustang Compressor Station, which extends north to access off the south side of E. $26^{\text {th }}$ Ave., approximately 0.5 miles east of the intersection of $\mathrm{E} .26^{\text {th }}$ Ave. and Monaghan Rd. The well site is located in the northwest quarter of the southwest quarter of Section 34, Township 3 South, Range 65 West, $6^{\text {th }}$ P.M. The proposed improvements will be constructed in one phase in support of drilling a total of seven (7) oil and gas wells. The drill pad will be a graded $460^{\prime} \mathrm{L} \times 605^{\prime} \mathrm{W}$ flat pad with production facilities located on the north side of the well pad. After drilling operations are completed, the south end of the drill pad will be interim reclaimed, reducing the size to a $345^{\prime} \mathrm{L} x$ 605 'W flat pad to support the production facility.

A topsoil stockpile (visual mitigation berm) will be located along the south edge of the drill pad and will provide visual mitigation from Interstate 70 . The visual mitigation berm will be 8 feet high with $4 \mathrm{H}: 1 \mathrm{~V}$ side slopes and will remain in place until it is partially used and relocated during the interim reclamation of the well pad.

The well pad will have an approximately $23^{\prime} \mathrm{W} \times 1,470^{\prime} \mathrm{L}$ gravel access road that will connect to the existing access road to the Mustang Compressor Station as previously mentioned. The road cross section will have a 2% crown to divert the water off each side of the road. The road structure will be comprised of four inches of CDOT Class 6 Aggregate Base used as a surfacing gravel. Reference Appendix A for a vicinity map of the well pad location.

SOILS INFORMATION

Using the US Department of Agriculture's web soil survey, four soil classifications are represented onsite.
Table 1 - NRCS Hydrologic Soil Group

Soil Type	Average Slope	Hydrologic Soil Group	Percent of AOI
Adena-Colby association	gently sloping	C	26.8%
Adena-Colby association	moderately sloping	C	2.1%
Platner loam	3 to 5 percent slopes	C	70.8%
Weld loam	1 to 3 percent slopes	C	0.3%

The soils are categorized as Hydrologic Soil Group C. Hydrologic Soil Group C is classified as having a slow infiltration rate when thoroughly wet.

The soils at the project location have a K factor ranging from 0.28 to 0.43 . The K factor indicates the susceptibility of a soil to sheet and rill erosion by water and varies from 0.02 (low susceptibility) to 0.69 (high susceptibility). Other factors being equal, the higher the value, the more susceptible the soil is to sheet and rill erosion by water. The weighted average K factor for the site is 0.34 . Refer to the attached soils map in Appendix B .

The existing landscape could be characterized as rangeland or dryland row crops.

PROPoSED DEVELOPMENT

The total disturbed area during construction of the drill pad is 13.3 acres, which does not include the access road disturbance of 1.7 acres. A temporary sediment basin will be constructed east of the proposed drill pad and is sized to capture and treat the on-site stormwater runoff for the bare soil areas, which are the cut and fill slopes of the drill pad. After the drilling operations are completed, the site will be interim reclaimed to a smaller production facility pad with a total disturbed area of 9.9 acres. The sediment basin will be removed and an extended detention basin will be constructed east of the proposed production facility pad and is sized to capture and treat the on-site stormwater runoff for the bare soil areas, which are the cut and fill slopes of the production facility pad.

The access road cross-section will be constructed with a 2% crown to divert the stormwater runoff to each side of the road and collect into roadside swales.

The drill pad, access road, and sediment basin will be graded by removing the topsoil and stockpiling it along the south edge of the proposed drill pad as an 8 ft high visual mitigation berm to Interstate 70 . The site will then be excavated to the finished grade elevation using the excavated soil as fill to balance the earthwork, leaving no spoils to be stockpiled. During interim reclamation, inert fill material will need to be hauled to the site and placed in the cut areas of the drill pad in order to return the site to its natural contours, or as close as possible. Topsoil from the visual mitigation berm will then be evenly placed over the reclaimed area, and the remaining topsoil will be relocated and stockpiled in an 8 ft high berm along the south edge of the production facility pad to provide visual mitigation from Interstate 70.

Variances

1. The proposed development is seeking a variance from the City to allow the drainage swales with a flow line grade that will be less than 2% (0.5% minimum). This variance is requested as a result of the existing grades of the natural topography are less than the 2% minimum..

B. Historic Drainage

The existing topography generally drains from southwest to northeast towards a tributary of Prairie Dog Draw at an existing grade of approximately 3%. There are seven (7) horizontal wells planned to be drilled from this pad. The western most wellhead is 493 feet east of the west section line, 232 feet from the west edge of the drill pad, 364 feet south of the quarter section line, and 245 feet from the north edge of the drill pad. The wellheads run in an east-west direction spaced 20 feet apart. The site is located within the Coyote Run watershed and near tributaries of Prairie Dog Draw, and lies outside of any floodplains. Stormwater runoff from the existing site generally collects into a natural swale running through the site, which eventually outfalls into Prairie Dog Draw. No other non-storm water sources are contemplated at this project site.

$100-$ YR FLOODPLAIN

The location of the well pad site is not within any mapped FEMA 100-year floodplain. The nearest edge of the Prairie Dog Draw Floodplain is approximately 1.0 mile northeast of the site. There are no springs or irrigation ditches on the site. Reference the Floodplain Exhibits in Appendix A for depiction of the project location in relation to the floodplain.

Off-Site BASINS

The existing site drainage flows from the southwest to the northeast towards the tributaries of Prairie Dog Draw.

There are four offsite drainage basins around the site. Basin OS-1 is located west of the site and flows east towards Offsite Ditch-1 and is then conveyed north to outlet into the historic drainage basin north of the site. Basin OS-2 is located south of the site and flows northeast towards Offsite Ditch-2 and is then conveyed east to discharge into Basin OS-4 east of the site. Basin OS-3 is located east of the site and flows northeast towards Pad Ditch-3 and is then conveyed east and discharges into the sediment basin. OS-4, as mentioned earlier, is located east of the site and flows northeast towards the Mustang Compressor Station, where it follows the contours of the compressor station landscaping and is conveyed northeast to Culvert-2, which conveys the stormwater runoff and the sediment basin overflow under the proposed access road, discharging north of the access road into a short ditch that outfalls to the historic drainage basin northeast of the pad. Existing flow patterns will be altered by diverting the offsite flows around the site, but eventually discharging into the historic drainage path on the downstream side of the site.

C. Design Criteria

References

This drainage report references the following documents that provide design criteria, calculation methodology, and drainage reports that are impacted by or impact the proposed site development:

1. City of Aurora - Storm Drainage Design and Technical Criteria, dated September 2010.
2. Mile High Flood District (Urban Drainage and Flood Control District) - Urban Drainage Criteria Manual, Vols I-III, most recent edition.

Hydrologic Criteria

The site is located in the non-urban area of Aurora and Adams County. The minor precipitation intensity was obtained from the Urban Storm Drainage Criteria Manual, Volume 1, January 2016 in Figure 5-1 - Rainfall depth-duration-frequency: 2-year, 1-hour rainfall (previously, Figure RA-1). The 2-Year 1-Hour rainfall intensity for the project location is $\mathbf{1 0} \mathbf{i n} / \mathrm{hr}$. The major precipitation intensity was obtained from the same location in Figure 5-6 - Rainfall depth-duration-frequency: 100-year, 1-hour rainfall (previously, Figure RA-6). The 100-Year 1Hour rainfall intensity for the project location is $\mathbf{2 . 7} \mathbf{~ i n} / \mathbf{h r}$. The location of the proposed site is depicted on the accompanying Drainage Plan included with this report submittal.

The Rational Method is used to compute peak runoff flows for the minor (2-year) and major (100-year) storm events for the on-site and off-site drainage basins. Initially, a weighted Rational coefficient calculation is performed for each of the basins, following the recommended Runoff Coefficient (C) values from Table 1 Runoff Coefficients and Percent Impervious of the City of Aurora - Storm Drainage Design and Technical Criteria Manual. The non-urban peak runoff flow is then calculated using the Rational Method Equation $\mathrm{Q}=\mathrm{CIA}$ as specified in the City of Aurora's Storm Drainage Design and Technical Criteria Manual and using the UD-Rational excel spreadsheet, as provided by the Mile High Flood District.

The Non-Urban Computed Time of Concentration is calculated following the equations listed in the City of Aurora's Storm Drainage Design and Technical Criteria Manual. The peak runoff flow calculation for each basin, at the "Computed T_{c} ", are printed from the UD-Rational spreadsheet and is included in this letter in Appendix D, for reference.

HYDRAULIC CRITERIA

The hydraulic criteria used to evaluate, analyze, and design hydraulic structures follow the criteria and guidance provided in the City of Aurora - Storm Drainage Design and Technical Criteria Manual and Mile High Flood District - Urban Storm Drainage Criteria Manual, Volume 2, latest adopted edition, where referenced.

Culverts are designed to convey the 100-year major storm event without overtopping any roadways nor exceeding 1.5 times the culvert diameter (per section 6.61 of the SDDTCM). The emergency overflow path will be identified on the plans and evaluated to determine capacity. In the case of available culvert capacity, a conveyance calculation will be used to show that the emergency overflow will be contained within the designed culvert. In the case that the culvert is close to capacity, the culvert and roadway structure will be evaluated to show the culvert flow under headwater conditions and any remaining emergency flow will be shown to overtop the roadway as a weir structure. The roadway weir overtopping calculation will be performed using Bentley CulvertMaster software and actual roadway profile conditions. Swales and/or Diversion Ditches are designed to convey the 100-year major storm event providing 12 inches of freeboard.

D. Drainage Plan

General Concept

The offsite drainage basins located west and south of the site will be diverted and conveyed around the edges of the site development and eventually discharge into the historic drainage path. There are four offsite drainage basins planned, OS-1, OS-2, OS-3, and OS-4. The onsite stormwater runoff from Basins A, B and C will be routed through ditches constructed around the perimeter of the well pad, which will discharge into the Extended Detention Basin located east of the site. These areas include the cut and fill slopes of the well pad, the ditches, and the visual mitigation berm.

The discharge from the temporary sediment basin (drilling operations) and the permanent Extended Detention Basin will discharge into the diversion ditch running along the south side of the access road to Culvert-2 under the access road, and discharging into the historic drainage northeast of the site. The Mustang Compressor Station site is located to the east of the proposed well pad. The stormwater runoff discharge from the site will discharge into the historic drainage located north of the Mustang Compressor Station site. The flow from the proposed Extended Detention Basin will not impact the existing Mustang Compressor Station site as it will flow within the historic drainage located north of the site.

Stormwater runoff from the south half of the access road will be routed through the ditches along the access road as previously mentioned, discharging into the historic drainage northeast of the site. Stormwater runoff from the north half of the access road will be treated by a grass buffer before discharging into the historic drainage northeast of the site. Reference the Grass Buffer spreadsheet in Appendix F.

Off-Site Drainage Basins

Basin OS-1 is located west of the site and flows east towards Offsite Ditch-1 and is then conveyed north to outlet into the historic drainage basin north of the site. Basin OS-2 is located south of the site and flows northeast towards Offsite Ditch-2 and is then conveyed east to discharge into Basin OS-4 east of the site. Basin OS-3 is located east of the site and flows northeast towards Pad Ditch-3 and is then conveyed east and discharges into the temporary sediment basin and extended detention basin. OS-4, as mentioned earlier, is located east of the
site and flows northeast towards the Mustang Compressor Station, where it follows the contours of the compressor station landscaping and is conveyed northeast to Culvert-2, which conveys the stormwater runoff and the extended detention basin outlet under the proposed access road, discharging north of the access road into a short ditch that outfalls to the historic drainage basin northeast of the pad. Reference the off-site drainage plan D-1 included in this report.

On-Site Drainage Basins

Basins A, B and C are drainage basins of the on-site pad areas. Basin A includes the onsite runoff from the western and northern areas of the site that include the cut and fill slopes of the pad. Basin A runoff flows towards Pad Ditch-1 along the west and north edges of the pad. Pad Ditch-1 conveys the runoff through Culvert-1 on the north end of the pad under the access road, discharging into Basin C and Pad Ditch-3. Basin B includes the onsite runoff from the southern and eastern areas of the site which includes the cut and fill slopes of the pad, and capturing the runoff from the visual mitigation berm (topsoil stockpile) south of the pad. Basin B runoff is conveyed east and north by Pad Ditch-2 along the south and east edges of the pad where it outfalls into Basin C and Pad Ditch-3. Basin C east of the site includes Pad Ditch-3, the extended detention basin, and the runoff from a portion of the access road. Pad Ditch-3 conveys the total onsite runoff, and runoff from OS-3, along the south edge of the access road where it outfalls into the temporary sediment basin (drilling operations) and the permanent Extended Detention Basin. Reference the on-site drainage plans D-2 \& D-3 accompanying this report.

The peak runoff flows for each basin are shown in the table below:
Table 2 - Peak Runoff Flow (cfs)

	Basin Area Basin ID	Imperv. (\%)	2-yr (C)	100-yr (C)	2-yr Peak Runoff Flow (cfs)	100-yr Peak Runoff Flow (cfs)
A (DRILL PHASE)	4.41	31.03	0.14	0.53	1.00	9.83
B(DRILL PHASE)	5.11	26.44	0.14	0.46	1.12	9.83
C(DRILL PHASE)	0.94	38.88	0.38	0.50	0.83	2.96
OS-1 (DRILL PHASE)	28.51	5.00	0.18	0.22	6.46	21.31
OS-2 (DRILL PHASE)	13.94	5.00	0.18	0.22	3.42	11.28
OS-3 (DRILL PHASE)	1.90	5.00	0.18	0.22	0.64	2.11
OS-4 (DRILL PHASE)	27.50	5.22	0.18	0.22	3.80	12.69
A (PROD PHASE)	3.45	29.25	0.14	0.50	0.77	7.30
B(PROD PHASE)	2.79	26.58	0.14	0.47	0.70	6.15
C(PROD PHASE)	1.12	47.54	0.43	0.54	1.11	3.73
OS-1 (PROD PHASE)	19.32	5.00	0.18	0.22	4.43	14.63
OS-2 (PROD PHASE)	22.67	5.00	0.18	0.22	4.90	16.18
OS-3 (PROD PHASE)	2.47	5.00	0.18	0.22	0.74	2.44
OS-4 (PROD PHASE)	30.53	5.16	0.18	0.22	4.22	14.05

CONVEYANCES

The minor and major storm routing through the site will be managed through the use of swales. The swales are designed to convey the 100-year stormwater runoff flows. Due to the flat grades of the existing ground, through the area of the swales, the minimum grade proposed for the swales varies from 0.25% to 1.50%, depending on the swale location. As a result, the swales will be constructed with an underdrain as shown in the detail on the Drainage Plans D-2 and D-3. It was determined that an underdrain outlet was not necessary, as only a small amount of water at the end of the swale would pond within the pipe and gravel, then over a period of time would infiltrate into the surrounding soil. The swales will be constructed with a 2 -foot wide flat bottom and $4: 1$ side slopes. The depth of the swale will be 24 inches, which will provide a minimum of 1 -foot of freeboard above the 100 -yr water surface elevation.

Extended Detention Basin

The proposed Extended Detention Basin will be located east of the proposed well pad site and will collect onsite stormwater runoff from the graveled pad area and from the slopes of the constructed well pad. The Extended Detention Basin will be privately maintained by the landowner. The detention basin outlet will outfall to the east by way of an Outlet Pipe which will discharge into the outlet ditch running along the south side of the access road to Culvert-2 under the proposed access road, discharging north of the access road into a short ditch that outfalls to the historic drainage basin northeast of the pad. The emergency overflow for the detention pond will discharge east of the detention basin into the same ditch as the outlet pipe described above. The detention basin will be constructed with $4 \mathrm{H}: 1 \mathrm{~V}$ side slopes for drivable maintenance access.

The area tributary to the Extended Detention Basin includes the graveled production facility pad, the cutfill slopes of the pad and ditches, and the EDB water surface. The tributary drainage area to the EDB is 7.36 acres. The cut/fill slopes of the pad and ditches were assumed to have an imperviousness of 5\%, and the graveled area of the pad was assumed to have an imperviousness of 40%. The EDB water surface was assumed to have an imperviousness of 100%.

Based on a tributary drainage area of greater than 5 acres, the EDB is required to detain the 100 -yr Detention Volume plus 1/2EURV. The EDB size was calculated using the MHFD - UD-Detention v4.04 (February 2021) spreadsheet, as well as the COA SDDTC V=KA equation to calculate the detention requirement, and selecting the greater value of the calculated volume and adding 1/2EURV. Reference the calculations included with this report in Appendix E.

The following table includes the extended detention basin design details:
Table 3 - Extended Detention Basin Summary

Tributary Drainage Area:	7.36 Ac.
Percent Imperviousness:	29.93%
$1 / 2 \mathrm{EURV}:$	$0.100 \mathrm{ac}-\mathrm{ft}$
$10-\mathrm{Yr}$ Detention Volume	$0.314 \mathrm{ac}-\mathrm{ft}$
$100-\mathrm{Yr}$ Detention Volume, V100 (MHFD):	$0.514 \mathrm{ac}-\mathrm{ft}$
$100-\mathrm{Yr}$ Detention Volume, V100 (COA V=KA):	$0.392 \mathrm{ac}-\mathrm{ft}$
Total Required Detention Volume = V100 + 1/2EURV:	$0.614 \mathrm{ac}-\mathrm{ft}$

Forebay Volume Req'd (3\% of WQCV):	122 cuft
10-Yr Allowable Release Rate (0.30 cfs/ac - SDDTCM Sec. 6.33):	$2.21 \mathrm{cfs}(\mathrm{C})$
100-Yr Allowable Release Rate (1.00 cfs/ac - SDDTCM Sec. 6.33):	7.36 cfs (C)

The inlet forebay will be sized to store 3% of the water quality capture volume (WQCV) at a maximum depth of 1.5 feet. The outlet structure will be designed to discharge at the 10-year and 100-year historic stormwater runoff rates utilizing a restrictor plate on the outlet pipe. The WQCV will be drained through an orifice plate installed on the outlet structure to drain at a slow rate over 40 hours. The EURV water volume will be drained through the outlet structure orifice plate and restrictor plate and will drain the volume within 72 hours.

E. ConClusions

The site hydrology and hydraulic conveyances will be designed to route and manage the 100-year stormwater runoff around and through the site and discharge into the historic drainage outfalls to the north of the site (eventually reaching the tributaries of Prairie Dog Draw and ultimately Coyote Run). As discussed earlier in this report, the location of the well pad site is not within any mapped FEMA 100-year floodplain. Onsite stormwater will be stored in an on-site Extended Detention Basin designed in accordance with the City of Aurora - Storm Drainage Design and Technical Criteria Manual to include the 100-year Runoff Volume plus 1/2EURV.

No adverse short term or long-term drainage impacts, resulting from the construction of the pad site or access road, are anticipated.

If the drainage patterns or imperviousness characteristics substantially deviate from what was considered in this drainage letter, and the accompanying Stormwater Management Plan and Site Plan, the City of Aurora shall be notified.

F. REFERENCES

This drainage report references the following documents that provide design criteria, calculation methodology, and drainage reports that are impacted by or impact the proposed site development:

1. City of Aurora - Storm Drainage Design and Technical Criteria, dated September 2010.
2. Mile High Flood District (Urban Drainage and Flood Control District) - Urban Drainage Criteria Manual, Vols I-III, most recent edition.
II. APPENDIX

Appendix A - Vicinity Map, Floodplain Map

National Flood Hazard Layer FIRMette

Legend

SEE FIS REPORT FOR DETAILED LEGEND AND INDEX MAP FOR FIRM PANEL LAYOUT

SPECIAL FLOOD	Without Base Flood Elevation (BFE) Zone A,V, A99 With BFE or Depth Zone AE, AO, AH, VE, AR	
HAZARD AREAS	\square	Regulatory Floodway

OTHER AREAS OF FLOOD HAZARD		0.2\% Annual Chance Flood Hazard, Areas of 1% annual chance flood with average depth less than one foot or with drainage areas of less than one square mile zone X Future Conditions 1\% Annual Chance Flood Hazard Zone X Area with Reduced Flood Risk due to Levee. See Notes. Zone X Area with Flood Risk due to Levee Zone D
		Area of Minimal Flood Hazard Zone X Effective LOMRs
OTHER AREAS		Area of Undetermined Flood Hazard Zone D
GENERAL STRUCTURES	-ーー	Channel, Culvert, or Storm Sewer Levee, Dike, or Floodwall
OTHER FEATURES		Cross Sections with 1\% Annual Chance Water Surface Elevation Coastal Transect Base Flood Elevation Line (BFE) Limit of Study Jurisdiction Boundary Coastal Transect Baseline Profile Baseline

[^0]This map complies with FEMA's standards for the use of digital flood maps if it is not void as described below. The basemap shown complies with FEMA's basemap accuracy standards
The flood hazard information is derived directly from the authoritative NFHL web services provided by FEMA. This map was exported on 12/4/2019 at 2:02:05 PM and does not reflect changes or amendments subsequent to this date and time. The NFHL and effective information may change or become superseded by new data over time.

This map image is vopiftoe nu 2 rofferthe following map elements do not appear: beasemap imagery, lood zone labels, legend, scale bar, map creation date, community identifiers, FiRM panel number, and FIRM effective date. Map images for unmapped and unmodernized areas cannot be used for regulatory purposes.

National Flood Hazard Layer FIRMette

Legend

SEE FIS REPORT FOR DETAILED LEGEND AND INDEX MAP FOR FIRM PANEL LAYOUT

This map complies with FEMA's standards for the use of digital flood maps if it is not void as described below. The basemap shown complies with FEMA's basemap accuracy standards
The flood hazard information is derived directly from the authoritative NFHL web services provided by FEMA. This map was exported on 12/30/2019 at 5:09:49 PM and does not reflect changes or amendments subsequent to this date and time. The NFHL and effective information may change or become superseded by new data over time.

This map image is volpiftaen 9 rofe 6 the following map elements do not appear:basemapimagery, flood zone labels, legend, scale bar, map creation date, community identifiers, FiRM panel number, and FIRM effective date. Map images fo unmapped and unmodernized areas cannot be used for regulatory purposes.

Appendix B - NRCS Soil Type Map

Natural Resources
Web Soil Survey
12/31/2019
Conservation Service

MAP LEGEND

Area of Interest (AOI)

MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:20,000.

Warning: Soil Map may not be valid at this scale.
Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale

Please rely on the bar scale on each map sheet for map measurements
Source of Map: Natural Resources Conservation Service Web Soil Survey URL:
Coordinate System: Web Mercator (EPSG:3857)
Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.
This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.
Soil Survey Area: Adams County Area, Parts of Adams and Denver Counties, Colorado
Survey Area Data: Version 16, Sep 12, 2019
Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.

Date(s) aerial images were photographed: Jul 17, 2015—Oct 2, 2017

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
AcC	Adena-Colby association, gently sloping	C	22.4	26.8\%
AcD	Adena-Colby association, moderately sloping	C	1.7	2.1\%
PIC	Platner loam, 3 to 5 percent slopes	C	59.1	70.8\%
WmB	Weld loam, 1 to 3 percent slopes	C	0.2	0.3\%
Totals for Area of Interest			83.4	100.0\%

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition
Component Percent Cutoff: None Specified
Tie-break Rule: Higher

USDA Natural Resources Conservation Service

National Cooperative Soil Survey
12/31/2019
Page 1 of 3

K Factor, Whole Soil

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
AcC	Adena-Colby association, gently sloping	.28	22.4	26.8%
AcD	Adena-Colby association, moderately sloping	.28	1.7	2.1%
PIC	Platner loam, 3 to 5 percent slopes	.37	59.1	70.8%
WmB	Weld loam, 1 to 3 percent slopes	.43	0.2	0.3%
Totals for Area of Interest	$\mathbf{8 3 . 4}$	$\mathbf{1 0 0 . 0 \%}$		

Description

Erosion factor K indicates the susceptibility of a soil to sheet and rill erosion by water. Factor K is one of six factors used in the Universal Soil Loss Equation (USLE) and the Revised Universal Soil Loss Equation (RUSLE) to predict the average annual rate of soil loss by sheet and rill erosion in tons per acre per year. The estimates are based primarily on percentage of silt, sand, and organic matter and on soil structure and saturated hydraulic conductivity (Ksat). Values of K range from 0.02 to 0.69 . Other factors being equal, the higher the value, the more susceptible the soil is to sheet and rill erosion by water.
"Erosion factor Kw (whole soil)" indicates the erodibility of the whole soil. The estimates are modified by the presence of rock fragments.

Rating Options

Aggregation Method: Dominant Condition
Component Percent Cutoff: None Specified
Tie-break Rule: Higher
Layer Options (Horizon Aggregation Method): Surface Layer (Not applicable)

APPENDIX C - USDCM Rainfall Intensity Maps

Figure 5-1. Rainfall depth-duration-frequency: 2-year, 1-hour rainfall

Figure 5-3. Rainfall depth-duration-frequency: 10-year, 1-hour rainfall

Figure 5-6. Rainfall depth-duration-frequency: 100-year, 1-hour rainfall

Appendix D - Offsite Drainage Plan

Appendix E - Drainage Basin Hydrology Calculations

City of Aurora Storm Drainage Design and Technical Criteria, Table 1 values for Runoff Coefficients and Percents Impervious were used in these calculations.

Area-Weighted Runoff Coefficient Calculations

Version 2.00 released May 2017
Designer: UELS - cdc
Company: Crestone Peak Resources
Date: 9/1/2021
Project: Drill Pad - Blue 3-65 33-32-31 Pad
Location: City of Aurora, Adams Co., CO

City of Aurora Storm Drainage Design and Technical Criteria, Table 1 values for Runoff Coefficients and Percents Impervious were used in these calculations.

Area-Weighted Runoff Coefficient Calculations

Version 2.00 released May 2017
Designer: UELS - cdc
Company: Crestone Peak Resources
Date: 9/1/2021
Project: Drill Pad - Blue 3-65 33-32-31 Pad
Location: City of Aurora, Adams Co., CO

City of Aurora Storm Drainage Design and Technical Criteria, Table 1 values for Runoff Coefficients and Percents Impervious were used in these calculations.

Area-Weighted Runoff Coefficient Calculations

Version 2.00 released May 2017
Designer: UELS - cdc
Company: Crestone Peak Resources
Date: 9/1/2021
Project: Drill Pad - Blue 3-65 33-32-31 Pad
Location: City of Aurora, Adams Co., CO

Cells of this color are for required user-input
Cells of this color are for optional override values
Cells of this color are for calculated results based on overrides

City of Aurora Storm Drainage Design and Technical Criteria, Table 1 values for Runoff Coefficients and Percents Impervious were used in these calculations.

Area-Weighted Runoff Coefficient Calculations

Version 2.00 released May 2017
Designer: UELS - cdc
Company: Crestone Peak Resources
Date: 9/1/2021
Project: Drill Pad - Blue 3-65 33-32-31 Pad
Location: City of Aurora, Adams Co., CO

[^1]| Calculation of Peak Runoff using Rational Method | |
| :---: |
| | | | | | | | | | | | | | | $\begin{aligned} & \hline \text { Computed } \mathrm{t}_{\mathrm{c}}=\mathrm{t}_{+}+\mathrm{t}_{\mathrm{t}} \\ & \hline \hline \text { Regional } \mathrm{t}_{\mathrm{c}}=(26-177)+\frac{\mathrm{L}}{\mathrm{~L}} \mathrm{60(14i+9)} \mathrm{\sqrt{s}_{t}} \end{aligned}$ | | | | | | | | | | | | | | | | | | | P(cfs) $=$ cia | | | | | | |
| | $\underset{\substack{\text { ared } \\ \text { ace }}}{\text { a }}$ | $\begin{gathered} \text { NRCS } \\ \text { Hydrologic } \\ \text { Soil Group } \end{gathered}$ | Percert | | | | | | | | | $\begin{aligned} & \text { Overland } \\ & \text { Filow Time } \end{aligned}$ | |
| Subsatament Name | | | | 2.vr | 5.yr | 10.yr | | | 100.yr | 500.yr | | | | | | | | | | | ${ }_{\text {Regioal }}^{\substack{\text { Region } \\ \text { timin) }}}$ | | $2 . y r$ | 5.y | 10.rr | neensit, | (inhr) | - | 500.yr | 2.yr | 5.yr | 10.yr | 25,y | 50.yr | W0.yr $\quad 500 . y r$ | |
| A | ${ }_{3} 35$ | c | 2925 | $\frac{021}{0.14}$ | ${ }_{0}^{0.27}$ | ${ }_{0}^{0.35}$ | ${ }^{048}$ | 0.54 | 0.60 | 0.68 | 30000 | | | 0.043 | | $\frac{1595}{1708}$ | 75800 | | | 0.009 | 10 | ${ }^{0.95}$ | ${ }^{1324}$ | ${ }_{\text {20922 }}^{\frac{2022}{}}$ | 33.14 | ${ }_{\text {20922 }}^{2032}$ | ${ }_{1}^{1.56}$ | ${ }_{2}^{223}$ | ${ }_{\text {263 }}^{268}$ | ${ }_{3}^{327}$ | ${ }_{\text {che }}^{3.76}$ | ${ }_{4}^{4.31}$ | ${ }_{5}^{561}$ | ${ }^{1.15}$ | ${ }_{2}^{210}$ | ${ }_{\text {3, }}^{\text {3, }}$ | ${ }_{5}^{5.44}$ | ${ }_{6}^{6.94}$ | | ¢ |
| в | 279 | c | 22.58 | 0.19 | ${ }^{0.25}$ | ${ }^{0.33}$ | 0.47 | 0.52 | 0.59 | 0.67 | 30000 | | | 0.042 | ${ }_{16,54}^{10,5}$ | 564.00 | | | 0.016 | 10 | 1.28 | ${ }^{1} .34$ | ${ }_{\text {20,88 }}^{248}$ | 27.25 | ${ }_{\text {20388 }}$ | ${ }_{1.199}$ | ${ }_{2,50}^{265}$ | ${ }_{29}^{29}$ | ${ }_{36}{ }^{307}$ | ${ }_{420}^{420}$ | ${ }_{483}$ | ${ }_{6}^{629}$ | ${ }^{0.94}$ | | ${ }^{269}$ | 4.78 | | ${ }_{7}^{7.98}$ | |
| c | ${ }^{1.12}$ | c | 47.54 | ${ }^{\frac{0}{0.36}}$ | ${ }_{0}^{042}$ | ${ }^{0.48}$ | 0.5 | 0.63 | 0.88 | 0.74 | 14000 | | | 0.025 | ${ }_{\substack{10.74 \\ 1028}}^{\text {10, }}$ | 25.00 | | | 0.013 | 10 | ${ }^{1.13}$ | 4.22 | ${ }^{\text {P4.966 }}$ | 20.61 | | ${ }^{227}$ | ${ }_{\text {a }}^{\substack{\text { 2, } \\ 3.8}}$ | ${ }^{\frac{289}{3,75}}$ | ${ }_{4.66}^{4.96}$ | | ${ }_{6.17}^{6.1}$ | | 0.9 | | | | | ${ }_{4}^{4.66}$ | |
| | ${ }^{231}$ | ${ }^{323}$ | ${ }^{3.81}$ | 4.73 | 542 | ${ }^{623}$ | ${ }^{8.12}$ | | 1.63 | | 3.10 | ${ }_{3.81}$ | | |
| os-1 | 1932 | c | 500 | ${ }_{0}^{0.03}$ | 0.08 | ${ }^{0.17}$ | ${ }^{0.35}$ | ${ }_{0} 0.42$ | ${ }^{0.50}$ | ${ }^{0.60}$ | 300.00 | | | 0.035 | ${ }^{21.18}$ | 170900 | | | 0.031 | | 122 | ${ }^{23,26}$ | ${ }_{4445}^{44}$ | 41.94 | | ${ }^{1.28}$ | | | | 3.00 | ${ }^{3,45}$ | 4.50 | 0.71 | ${ }^{262}$ | | | | | |
| | | | | | 0.08 | 0.17 | 0.35 | 0.42 | ${ }^{0.50}$ | 0.60 | | | | | | | | | | | | 220 | | | | ${ }_{1}^{128}$ | ${ }_{1}^{1.70}$ | ${ }_{210}^{200}$ | ${ }_{261}^{24}$ | 300 | 3.4 | ${ }_{4}^{49}$ | | | ${ }^{8,13}$ | ${ }^{17,52}$ | ${ }^{24.18}$ | | |
| os.2 | 2267 | c | 5.00 | | | | | | | | 30000 | | | 0.040 | 2021 | ${ }^{1888000}$ | | | 0.025 | 7 | ${ }^{1.12}$ | ${ }^{28.18}$ | ${ }^{46.19}$ | ${ }^{4548}$ | ${ }_{\text {ciele }}^{46.19}$ | ${ }^{1.20}$ | ${ }^{1.1 .88}$ | ${ }^{1.98}$ | ${ }_{246}^{24}$ | ${ }^{282}$ | ${ }^{324}$ | ${ }^{423}$ | | | ${ }^{8.99}$ | ${ }^{19,37}$ | ${ }^{26,73}$ | | |
| os, 3 | 2.47 | c | 5.00 | | ${ }^{0.08}$ | 20 | $0^{0.35}$ | 0.42 | 0.50 | 0.60 | 25800 | | | 0.023 | $\stackrel{\text { 22033 }}{ }{ }^{2023}$ | 45900 | | | 0.023 | 7 | 1.07 | ${ }^{7} 14$ | | 30.30 | | ${ }_{1}^{1.66}$ | ${ }_{233}$ | ${ }_{2}^{274}$ | ${ }_{3,1}$ | ${ }^{391}$ | 420 | ${ }_{5}^{505}$ | | ${ }_{10,}^{10 .}$ | ${ }_{1}^{1.36}$ | ${ }_{292}^{29}$ | ${ }_{403}^{403}$ | ${ }^{\text {254 }}$ | |
| os.4 | 30.53 | c | 5.16 | Sos | ${ }_{0}^{0.19}$ | ${ }^{0.12}$ | ${ }^{0.35}$ | 0.42 | ${ }^{0.5}$ | 0.60 | 30000 | | | 0.033 | ¢ ${ }_{\text {21.51 }}^{19.15}$ | ${ }^{425000}$ | | | 0.021 | 7 | 1.01 | ${ }^{20.16}$ | | ${ }^{75.64}$ | ${ }_{\substack{75.64 \\ 899}}$ | ${ }_{\text {O }}^{0.86}$ 0.7 | $\stackrel{1.27}{1.07}$ | $\stackrel{1.422}{1.27}$ | ${ }^{1.1 .77}$ | $\stackrel{\substack{203 \\ 1.80}}{ }$ | ${ }^{207}$ | ${ }^{\frac{307}{270}}$ | ${ }^{0.79}$ | ${ }^{\frac{2}{284}}$ | ${ }^{78,76}$ | (18,78 | | (e) | ${ }^{19.96}$ |
| |
| EDB Overfow | ${ }_{9} 93$ | c | ${ }^{24,48}$ | ${ }_{0}^{0.17}$ | ${ }_{0}^{023}$ | ${ }^{0.37}$ | ${ }_{0}^{0.46}$ | 0.51 | ${ }_{\text {O.58 }}^{0.41}$ | 0.87 | 30000 | | | 0.940 | $\stackrel{\text { 71009 }}{17}$ | ${ }^{128300}$ | | | 0.015 | 10 | ${ }^{1.21}$ | 17.70 | $\underset{\substack{34788 \\ 3504}}{\text { 3, }}$ | 36.08 | ${ }_{\substack{34788 \\ 3504}}$ | ${ }_{1 / 44}^{143}$ | ${ }_{2}^{200}$ | ${ }_{236}^{\frac{236}{}}$ | ${ }_{2 \text { 294 }}^{298}$ | ${ }_{3}{ }_{36}$ | ${ }_{\substack{388 \\ 3.86}}$ | $\frac{50}{50}$ | ${ }_{242}^{24}$ | ${ }_{4}^{4.46}$ | ${ }_{6.28}^{68}$ | ${ }_{\substack{1320 \\ 13.4}}$ | | | (inct |
| |

City of Aurora Storm Drainage Design and Technical Criteria, Table 1 values for Runoff Coefficients and Percents Impervious were used in these calculations.

Area-Weighted Runoff Coefficient Calculations

Version 2.00 released May 2017
Designer: UELS - cdc
Company: Crestone Peak Resources
Date: 9/1/2021
Project: Prod Pad - Blue 3-65 33-32-31 Pad
Location: City of Aurora, Adams Co., CO

City of Aurora Storm Drainage Design and Technical Criteria, Table 1 values for Runoff Coefficients and Percents Impervious were used in these calculations.

Area-Weighted Runoff Coefficient Calculations

Version 2.00 released May 2017
Designer: UELS - cdc
Company: Crestone Peak Resources
Date: 9/1/2021
Project: Prod Pad - Blue 3-65 33-32-31 Pad
Location: City of Aurora, Adams Co., CO

City of Aurora Storm Drainage Design and Technical Criteria, Table 1 values for Runoff Coefficients and Percents Impervious were used in these calculations.

Area-Weighted Runoff Coefficient Calculations

Version 2.00 released May 2017
Designer: UELS - cdc
Company: Crestone Peak Resources
Date: 9/1/2021
Project: Prod Pad - Blue 3-65 33-32-31 Pad
Location: City of Aurora, Adams Co., CO

City of Aurora Storm Drainage Design and Technical Criteria, Table 1 values for Runoff Coefficients and Percents Impervious were used in these calculations.

Area-Weighted Runoff Coefficient Calculations

Version 2.00 released May 2017
Designer: UELS - cdc
Company: Crestone Peak Resources
Date: 9/1/2021
Project: Prod Pad - Blue 3-65 33-32-31 Pad
Location: City of Aurora, Adams Co., CO

Sub-Area ID	Area (ac)	NRCS Hydrologic Soil Group	Percent Imperviousness	Runoff Coefficient, C						
				2-yr	5-yr	10-yr	25-yr	50-yr	100-yr	500-yr
Gravel	14	C	40.0	0.30	0.36	0.43	0.54	0.59	0.65	0.71
				0.15	0.25	0.35			0.65	
2-7\% Si - Cut/Fill	30.39	C	5.0	0.03	0.08	0.17	0.35	0.42	0.50	0.60
2-7\%SI - CulFill	30.39	c	5.0	0.18	0.19	0.20			0.22	
			Area-Weighted C	0.03	0.08	0.17	0.35	0.42	0.51	0.60
tal Area (ac)	30.53	Area-Wei	ghted Override C	0.18	0.19	0.20	0.35	0.42	0.22	0.60

[^2]
Area-Weighted Runoff Coefficient Calculations

Version 2.00 released May 2017
Designer: UELS - cdc
Company: Crestone Peak Resources
Date: 9/1/2021
Project: Prod Pad - Blue 3-65 33-32-31 Pad
Location: City of Aurora, Adams Co., CO

EDB Overflow
See sheet "Design Info" for imperviousness-based runoff coefficient values.

Sub-Area ID	Area (ac)	NRCS Hydrologic Soil Group	Percent Imperviousness	Runoff Coefficient, C						
				2-yr	5-yr	10-yr	25-yr	50-yr	100-yr	500-yr
Gravel	4.25	C	40.0	0.30	0.36	0.43	0.54	0.59	0.65	0.71
				0.15	0.25	0.35			0.65	
2\%Si - Cut/Fill	5.13	C	5.0	0.03	0.08	0.17	0.35	0.42	0.50	0.60
				0.13	0.14	0.15			0.17	
EDB	0.45	C	100.0	0.83	0.85	0.87	0.88	0.89	0.89	0.90
				0.87	0.88	0.90			0.93	
Total Area (ac)	9.83		Area-Weighted C	0.18	0.23	0.31	0.46	0.51	0.58	0.67
Total Area (ac)	9.83	Area-Wei	hted Override C	0.17	0.22	0.27	0.46	0.51	0.41	0.67

City of Aurora Storm Drainage Design and Technical Criteria, Table 1 values for Runoff Coefficients and Percents Impervious were used in these calculations.

Appendix F - Conveyance Hydraulic Calculations

Normal Flow Analysis - Trapezoidal Channel

Design Information (Input)		
Channel Invert Slope	So $=$	$0.0025 \mathrm{ft} / \mathrm{ft}$
Manning's n	n	0.020
Bottom Width		2.00 ft
Left Side Slope	Z1 =	$4.00 \mathrm{ft} / \mathrm{ft}$
Right Side Slope	Z2 =	$4.00 \mathrm{ft} / \mathrm{ft}$
Freeboard Height		1.00 ft
Design Water Depth		1.00 ft
Normal Flow Condtion (Calculated)		
Discharge	Q =	15.64 cfs
Froude Number	$\mathrm{Fr}=$	0.59
Flow Velocity	V	2.61 fps
Flow Area	A	6.00 sq ft
Top Width	T	10.00 ft
Wetted Perimeter	P	10.25 ft
Hydraulic Radius	$\mathrm{R}=$	0.59 ft
Hydraulic Depth	D =	0.60 ft
Specific Energy	Es =	1.11 ft
Centroid of Flow Area	$\mathrm{Yo}=$	0.39 ft
Specific Force	Fs $=$	0.22 kip

Normal Flow Analysis - Trapezoidal Channel

Project:	Blue 3-65 33-32-31 Pad
Channel ID:	Basin OS-1-Q100 = 21.31 cfs \quad Basin OS-2 - Q100 = 11.28 cfs

Design Information (Input)		
Channel Invert Slope	So =	$0.0120 \mathrm{ft} / \mathrm{ft}$
Manning's n	n	0.020
Bottom Width	B =	2.00 ft
Left Side Slope	Z1 =	$4.00 \mathrm{ft} / \mathrm{ft}$
Right Side Slope	Z2 =	$4.00 \mathrm{ft} / \mathrm{ft}$
Freeboard Height		1.00 ft
Design Water Depth		1.00 ft
Normal Flow Condtion (Calculated)		
Discharge	Q =	34.27 cfs
Froude Number	$\mathrm{Fr}=$	1.30
Flow Velocity	$\mathrm{V}=$	5.71 fps
Flow Area	A $=$	6.00 sq ft
Top Width	T	10.00 ft
Wetted Perimeter		10.25 ft
Hydraulic Radius	$\mathrm{R}=$	0.59 ft
Hydraulic Depth	$\mathrm{D}=$	0.60 ft
Specific Energy	Es =	1.51 ft
Centroid of Flow Area	Yo =	0.39 ft
Specific Force	Fs $=$	0.52 kip

Normal Flow Analysis - Trapezoidal Channel

Project:
Channel ID:

Design Information (Input)		
Channel Invert Slope	So =	$0.0150 \mathrm{ft} / \mathrm{ft}$
Manning's n	n =	0.020
Bottom Width	B =	2.00 ft
Left Side Slope	Z1 =	$4.00 \mathrm{ft} / \mathrm{ft}$
Right Side Slope	Z2 =	$4.00 \mathrm{ft} / \mathrm{ft}$
Freeboard Height	F =	1.00 ft
Design Water Depth	$Y=$	1.00 ft
Normal Flow Condtion (Calculated)		
Discharge	Q =	38.32 cfs
Froude Number	$\mathrm{Fr}=$	1.45
Flow Velocity	$\mathrm{V}=$	6.39 fps
Flow Area	A =	6.00 sq ft
Top Width	T =	10.00 ft
Wetted Perimeter	$\mathrm{P}=$	10.25 ft
Hydraulic Radius	$\mathrm{R}=$	0.59 ft
Hydraulic Depth	D =	0.60 ft
Specific Energy	Es =	1.63 ft
Centroid of Flow Area	Yo =	0.39 ft
Specific Force	Fs $=$	0.62 kip

Normal Flow Analysis - Trapezoidal Channel

Design Information (Input)		
Channel Invert Slope	So =	$0.0070 \mathrm{ft} / \mathrm{ft}$
Manning's n	n	0.020
Bottom Width	$\mathrm{B}=$	2.00 ft
Left Side Slope	Z1 =	$4.00 \mathrm{ft} / \mathrm{ft}$
Right Side Slope	Z2 =	$4.00 \mathrm{ft} / \mathrm{ft}$
Freeboard Height	F	1.00 ft
Design Water Depth		1.00 ft
Normal Flow Condtion (Calculated)		
Discharge	Q =	26.18 cfs
Froude Number	$\mathrm{Fr}=$	0.99
Flow Velocity	$\mathrm{V}=$	4.36 fps
Flow Area	A =	6.00 sq ft
Top Width	T	10.00 ft
Wetted Perimeter		10.25 ft
Hydraulic Radius	$\mathrm{R}=$	0.59 ft
Hydraulic Depth	D =	0.60 ft
Specific Energy	Es =	1.30 ft
Centroid of Flow Area	Yo =	0.39 ft
Specific Force	Fs $=$	0.37 kip

CIRCULAR CONDUIT FLOW (Normal \& Critical Depth Computation)

Project: Blue 3-65 33-32-31 Well Site
Pipe ID: Culvert 1-(1) 24"x94' CMP - Q100=9.83 cfs

Design Information (Input)
Pipe Invert Slope
Pipe Manning's n-value
Pipe Diameter
Design discharge

So =	0.0174	$\left\{\begin{array}{l} \mathrm{ft} / \mathrm{ft} \\ \text { inches } \\ \text { cfs } \end{array}\right.$
n $=$	0.0150	
D $=$	24.00	
Q =	9.83	

Full-flow Capacity (Calculated)
Full-flow area
Full-flow wetted perimeter
Half Central Angle
Full-flow capacity

Calculation of Normal Flow Condition

Half Central Angle ($0<$ Theta<3.14)
Flow area
Top width
Wetted perimeter
Flow depth
Flow velocity
Discharge
Percent Full Flow
Normal Depth Froude Number

Calculation of Critical Flow Condition
Half Central Angle ($0<$ Theta-c<3.14)
Critical flow area
Critical top width
Critical flow depth
Critical flow velocity
Critical Depth Froude Number

Theta-c $=$	1.69	radians
Ac =	1.81	sq ft
Tc =	1.99	ft
Yc $=$	1.12	ft
$\mathrm{Vc}=$	5.42	fps
$\mathrm{Fr}_{\mathrm{c}}=$	1.00	

Project: Blue cells are for user data entry
Basin ID: Green cells are calculated values

Soil Type:

Project $=$
Blue 3-65 33-32-31 Well Site
Box ID = Culvert 1-(1) 24"x94' CMP - Q100=9.83 cfs

Culvert Information (Input)		
Barrel Diameter or Height	D or $\mathrm{H}=$	24.00 inches
Barrel Length	L =	94.00 ft
Barrel Invert Slope	So =	$0.0174 \mathrm{ft} / \mathrm{ft}$
Downstream Invert Elevation	EDI =	5581.57 ft
Downstream Top Embankment Elevation	EDT =	5590.83 ft
Upstream Top Embankment Elevation	EUT =	5591.18 ft
Design Headwater Depth (not elev.)	$\mathrm{Hw}=$	1.60 ft
Tailwater Depth (not elev.)	Yt $=$	0.80 ft
Culvert Hydraulics (Calculated)		
Available Headwater Depth	HW-a =	7.97 ft
Design Hw/D ratio	$\mathrm{Hw} / \mathrm{D}=$	0.80
Culvert Vertical Profile		
Upstream Invert Elevation	EUI $=$	5583.21 ft
Upstream Crown Elevation	EUC =	5585.21 ft
Upstream Soil Cover Depth	Upsoil =	5.97 ft
Downstream Invert Elevation	EDI =	5581.57 ft
Downstream Crown Elevation	EDC $=$	5583.57 ft
Downstream Soil Cover Depth	Dnsoil $=$	7.61 ft

CIRCULAR CONDUIT FLOW (Normal \& Critical Depth Computation)

Project: Blue 3-65 33-32-31 Well Site
Pipe ID: Culvert 2-(2) 24"x58' CMP - Q100=23.7 cfs (11.85 cfs/culvert)

Design Information (Input)
Pipe Invert Slope
Pipe Manning's n-value
Pipe Diameter
Design discharge

So $=$	0.0118	$\left\{\begin{array}{l} \mathrm{ft} / \mathrm{ft} \\ \text { inches } \\ \text { cfs } \end{array}\right.$
$\mathrm{n}=$	0.0150	
D $=$	24.00	
Q =	11.85	

Full-flow Capacity (Calculated)
Full-flow area
Full-flow wetted perimeter
Half Central Angle
Full-flow capacity

Calculation of Normal Flow Condition

Half Central Angle ($0<$ Theta<3.14)
Flow area
Top width
Wetted perimeter
Flow depth
Flow velocity
Discharge
Percent Full Flow
Normal Depth Froude Number

Calculation of Critical Flow Condition
Half Central Angle ($0<$ Theta-c<3.14)
Critical flow area
Critical top width
Critical flow depth
Critical flow velocity
Critical Depth Froude Number

Theta-c $=$	1.81	radians
Ac =	2.04	sq ft
Tc =	1.94	ft
Yc $=$	1.24	ft
$\mathrm{Vc}=$	5.81	fps
$\mathrm{Fr}_{\mathrm{c}}=$	1.00	

Project: Blue cells are for user data entry
Basin ID: Green cells are calculated values

Soil Type:

Project $=$
Blue 3-65 33-32-31 Well Site
Box ID = \qquad

Culvert Information (Input)			
Barrel Diameter or Height	D or $\mathrm{H}=$	24.00	inches
Barrel Length	L =	58.00	ft
Barrel Invert Slope	So =	0.0117	$\mathrm{ft} / \mathrm{ft}$
Downstream Invert Elevation	EDI $=$	5560.17	ft
Downstream Top Embankment Elevation	EDT =	5564.77	ft
Upstream Top Embankment Elevation	EUT =	5564.85	$f t$
Design Headwater Depth (not elev.)	$\mathrm{Hw}=$	1.80	ft
Tailwater Depth (not elev.)	Yt $=$	0.80	$f t$
Culvert Hydraulics (Calculated)			
Available Headwater Depth	HW-a $=$	4.00	ft
Design Hw/D ratio	Hw/D =	0.90	
Culvert Vertical Profile			
Upstream Invert Elevation	EUI $=$	5560.85	ft
Upstream Crown Elevation	EUC =	5562.85	ft
Upstream Soil Cover Depth	Upsoil =	2.00	ft
Downstream Invert Elevation	EDI =	5560.17	ft
Downstream Crown Elevation	EDC $=$	5562.17	ft
Downstream Soil Cover Depth	Dnsoil $=$	2.68	ft

CIRCULAR CONDUIT FLOW (Normal \& Critical Depth Computation)

Project: Blue 3-65 33-32-31 Well Site
Pipe ID: Culvert 3-(2) 24"x138' CMP - Q100=44.03 cfs (22.02 cfs/culvert)

Design Information (Input)
Pipe Invert Slope
Pipe Manning's n-value
Pipe Diameter
Design discharge

So =	0.0232	$\mathrm{ft} / \mathrm{ft}$
$\mathrm{n}=$	0.0150	
D $=$	24.00	inches
Q =	22.02	cfs

Full-flow Capacity (Calculated)
Full-flow area
Full-flow wetted perimeter
Half Central Angle
Full-flow capacity

Calculation of Normal Flow Condition

Half Central Angle ($0<$ Theta<3.14)
Flow area
Top width
Wetted perimeter
Flow depth
Flow velocity
Discharge
Percent Full Flow
Normal Depth Froude Number

Calculation of Critical Flow Condition
Half Central Angle ($0<$ Theta-c<3.14)
Critical flow area
Critical top width
Critical flow depth
Critical flow velocity
Critical Depth Froude Number

Theta-c $=$	2.31	radians
$\mathrm{Ac}=$	2.81	sq ft
Tc =	1.47	ft
$\mathrm{Yc}=$	1.68	ft
$\mathrm{Vc}=$	7.83	fps
$\mathrm{Fr}_{\mathrm{c}}=$	1.00	

Project: Blue cells are for user data entry
Basin ID: Green cells are calculated values

Soil Type:

Design Information (Input):	
	Design Discharge
Circular Culvert:	
	Barrel Diameter in Inches
	Inlet Edge Type (Choose from pull-down list)
Box Culvert:	
	Barrel Height (Rise) in Feet
	Barrel Width (Span) in Feet
	Inlet Edge Type (Choose from pull-down list)
	Number of Barrels
	Inlet Elevation
	Outlet Elevation OR Slope
	Culvert Length
	Manning's Roughness
	Bend Loss Coefficient
	Exit Loss Coefficient
	Tailwater Surface Elevation

Required Protection (Output):

Tailwater Surface Height
Max Allowable Channel Velocity
Flow Area at Max Channel Velocity
Culvert Cross Sectional Area Available
Entrance Loss Coefficien
Friction Loss Coefficient
Sum of All Losses Coefficients
Culvert Normal Depth
Culvert Critical Depth

$\mathrm{Y}_{\mathrm{t}}=$	0.80
$V=$	7.00
$\mathrm{A}_{\mathrm{t}}=$	3.14
A =	3.14
$\mathrm{k}_{\mathrm{e}}=$	0.20
$\mathrm{k}_{\mathrm{f}}=$	2.27
$\mathrm{k}_{\mathrm{s}}=$	3.47
$Y_{n}=$	1.28
$Y_{\text {c }}=$	1.68

Tailwater Depth for Design
Adjusted Diameter OR Adjusted Rise
Expansion Factor
Flow/Diameter ${ }^{2.5}$ OR Flow/(Span * Rise ${ }^{1.5}$)
Tailwater/Diameter OR Tailwater/Rise

Inlet Control Headwate
Outlet Control Headwater
Design Headwater Elevation
Headwater/Diameter OR Headwater/Rise Ratio

Minimum Theoretical Riprap Size
Nominal Riprap Size
UDFCD Riprap Type
Length of Protection

$\mathrm{HW}_{1}=$	2.82
$\mathrm{HW}_{\mathrm{O}}=$	1.29
HW =	5,564.71
HW/D $=$	1.41

$\mathrm{d}_{50}=$	6
$\mathrm{d}_{50}=$	9
Type $=$	L
$L_{p}=$	7

Vertical Profile for the Culvert

Project $=$
Blue 3-65 33-32-31 Well Site
Box ID = \qquad
Upstream Top
Embanknent

Culvert Information (Input)			
Barrel Diameter or Height	D or $\mathrm{H}=$	24.00	inches
Barrel Length	L =	138.00	ft
Barrel Invert Slope	So =	0.0232	$\mathrm{ft} / \mathrm{ft}$
Downstream Invert Elevation	EDI $=$	5558.70	ft
Downstream Top Embankment Elevation	EDT =	5562.63	ft
Upstream Top Embankment Elevation	EUT =	5563.63	ft
Design Headwater Depth (not elev.)	Hw =	2.82	ft
Tailwater Depth (not elev.)	Yt $=$	0.80	ft
Culvert Hydraulics (Calculated)			
Available Headwater Depth	HW-a =	1.73	ft
Design Hw/D ratio	$\mathrm{Hw} / \mathrm{D}=$	1.41	
Culvert Vertical Profile			
Upstream Invert Elevation	EUI =	5561.90	ft
Upstream Crown Elevation	EUC =	5563.90	ft
Upstream Soil Cover Depth	Upsoil =	-0.27	ft
Downstream Invert Elevation	EDI =	5558.70	ft
Downstream Crown Elevation	EDC =	5560.70	ft
Downstream Soil Cover Depth	Dnsoil $=$	2.93	ft

Design Procedure Form: Grass Buffer (GB)			
U UD-BMP (Version 3.07, March 2018)			Sheet 1 of 1
Designer: Company: Date: Project: Location:	UELS - cdc		
	Crestone Peak Resources		
	September 2, 2021		
	Blue 3-65 33-32-31 Pad		
	City of Aurora, Adams County		
1. Design Discharge			
2. Minimum Width of Grass Buffer		$\mathrm{W}_{\mathrm{G}}=\square 7 \mathrm{ft}$	
3. Length of Grass Buffer (14' or greater recommended)		$\mathrm{L}_{\mathrm{G}}=1,470 \mathrm{ft}$	
4. Buffer Slope (in the direction of flow, not to exceed $0.1 \mathrm{ft} / \mathrm{ft}$)		$\mathrm{S}_{\mathrm{G}}=0.090 \mathrm{ft} / \mathrm{ft}$	
5. Flow Ch A) Doe entir B) Wat C) Inte D) Typ She Con	acteristics (sheet or concentrated) unoff flow into the grass buffer across the idth of the buffer? hed Flow Length Slope (normal to flow) Flow Flow: $\mathrm{F}_{\mathrm{L}}{ }^{*} \mathrm{~S}_{\mathrm{I}} \leq 1$ trated Flow: $F_{L}{ }^{*} S_{I}>1$	$\left[\begin{array}{c}\text { Choose One } \\ \text { Ores } \\ \text { Ore }\end{array}\right.$ ONo $\begin{aligned} & \mathrm{F}_{\mathrm{L}}=\frac{17}{} \mathrm{ft} \\ & \mathrm{~S}_{\mathrm{I}}=\square 0.020 \mathrm{ft} / \mathrm{ft} \end{aligned}$	
6. Flow Distribution for Concentrated Flows		$\left[\begin{array}{c} \text { Choose One (sheet flow) } \\ \text { ONone } \\ \text { OSlotted Curbing } \\ \text { OLevel Spreader } \\ \text { Oother (Explain): } \end{array}\right.$	
7 Soil Preparation (Describe soil amendment)		$\underline{\text { Use on-site topsoil. }}$	
8 Vegetation (Check the type used or describe "Other")		$\left[\begin{array}{l} \text { Choose One } \\ \text { OExisting Xeric Turf Grass } \\ \text { Olrigated Turf Grass } \\ \text { Oother (Explain): } \end{array}\right.$	
9. Irrigation (*Select None if existing buffer area has 80% vegetation AND will not be disturbed during construction.)			
10. Outflow Collection (Check the type used or describe "Other")		$\left[\begin{array}{c}\text { Choose One } \\ \text { OGrass Swale } \\ \text { Ostreet Gutter } \\ \text { OStorm Sewer Inlet } \\ \text { OOther (Explain): }\end{array}\right.$	
Notes: \quad After treatment in the grass buffer, stormwater will be conveyed along the fill slope of the road into the historic drainage path north of the site.			
			54 of 6

Appendix G - Extended Detention Pond Calculations

DETENTION BASIN OUTLET STRUCTURE DESIGN

Routed Hydrograph ResultsDesign Storm Return Period $=$	The user can override the default CUHP hydrographs and runoff volumes by entering new values in the Inflow Hydrographs table (Columns W through A							
	WQCV	EURV	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year
One-Hour Rainfall Depth (in) =	N/A	N/A	1.00	1.40	1.65	2.05	2.35	2.70
CUHP Runoff Volume (acre-ft)	0.093	0.200	0.176	0.376	0.521	0.795	0.981	1.232
Inflow Hydrograph Volume (acre-ft) $=$	N/A	N/A	0.176	0.376	0.521	0.795	0.981	1.232
CUHP Predevelopment Peak Q (cfs) =	N/A	N/A	0.4	2.3	3.3	6.4	8.0	10.4
OPTIONAL Override Predevelopment Peak Q (cfs) =	N/A	N/A						
Predevelopment Unit Peak Flow, q (cfs/acre) =	N/A	N/A	0.05	0.31	0.45	0.86	1.09	1.42
Peak Inflow Q (cfs) =	N/A	N/A	1.9	4.3	5.7	9.3	11.3	14.0
Peak Outflow Q (cfs) =	0.0	0.0	0.0	0.0	0.0	0.1	0.1	0.1
Ratio Peak Outflow to Predevelopment $\mathrm{Q}=$	N/A	N/A	N/A	0.0	0.0	0.0	0.0	0.0
Structure Controlling Flow =	Plate							
Max Velocity through Grate 1 (fps) =	N/A							
Max Velocity through Grate 2 (fps) =	N/A							
Time to Drain 97\% of Inflow Volume (hours) =	92	>120	>120	>120	>120	>120	>120	>120
Time to Drain 99\% of Inflow Volume (hours) =	96	>120	>120	>120	>120	>120	>120	>120
Maximum Ponding Depth (ft) =	1.05	1.43	1.33	1.94	2.35	3.06	3.51	4.07
Area at Maximum Ponding Depth (acres) $=$	0.24	0.31	0.30	0.34	0.36	0.40	0.43	0.46
Maximum Volume Stored (acre-ft) =	0.093	0.201	0.171	0.368	0.509	0.784	0.966	1.218

STAGE-DISCHARGE SIZING OF THE SPILLWAY

Project: Blue 3-65 33-32-31 Pad
Basin ID: EDB-1

Design Information (input):
Bottom Length of Weir
Angle of Side Slope Weir
Elev. for Weir Crest
Coef. for Rectangular Weir
Coef. for Trapezoidal Weir

| L | $=$20.00 feet
 Angle $=$
 75.96
 degree |
| ---: | :--- | :--- |

EL.

	st
$=$	$5,571.40$
C_{w}	feet
C_{t}	$=3.00$

Calculation of Spillway Capacity (output):

Water Surface Elevation ft. (linked)	Rect. Weir Flowrate cfs (output)	Triangle Weir Flowrate cfs (output)	Total Spillway Release cfs (output)	
5568.80	0.00	0.00	0.00	0.00
5568.90	0.00	0.00	0.00	0.00
5569.00	0.00	0.00	0.00	0.00
5569.10	0.00	0.00	0.00	0.00
5569.20	0.00	0.00	0.00	0.00
5569.30	0.00	0.00	0.00	0.00
5569.40	0.00	0.00	0.00	0.00
5569.50	0.00	0.00	0.00	0.00
5569.60	0.00	0.00	0.00	0.00
5569.70	0.00	0.00	0.00	0.00
5569.80	0.00	0.00	0.00	0.00
5569.90	0.00	0.00	0.00	0.00
5570.00	0.00	0.00	0.00	0.00
5570.10	0.00	0.00	0.00	0.00
5570.20	0.00	0.00	0.00	0.00
5570.30	0.00	0.00	0.00	0.00
5570.40	0.00	0.00	0.00	0.00
5570.50	0.00	0.00	0.00	0.00
5570.60	0.00	0.00	0.00	0.00
5570.70	0.00	0.00	0.00	0.00
5570.80	0.00	0.00	0.00	0.00
5570.90	0.00	0.00	0.00	0.00
5571.00	0.00	0.00	0.00	0.00
5571.10	0.00	0.00	0.00	0.00
5571.20	0.00	0.00	0.00	0.00
5571.30	0.00	0.00	0.00	0.00
5571.40	0.00	0.00	0.00	0.00
5571.50	1.90	0.04	1.94	1.94
5571.60	5.37	0.21	5.58	5.58
5571.70	9.86	0.59	10.45	10.45
5571.80	15.18	1.21	16.39	16.39
5571.90	21.21	2.12	23.33	23.33
5572.00	27.89	3.35	31.23	31.23
5572.10	35.14	4.92	40.06	40.06
5572.20	42.93	6.87	49.80	49.80
5572.30	51.23	9.22	60.45	60.45
5572.40	60.00	12.00	72.00	72.00
5572.50	69.22	15.22	84.45	84.45
5572.60	78.87	18.92	97.80	97.80
5572.70	88.93	23.12	112.05	112.05
5572.80	99.39	27.82	127.21	127.21
\#N/A	\#N/A	\#N/A	\#N/A	\#N/A
\#N/A	\#N/A	\#N/A	\#N/A	\#N/A
\#N/A	\#N/A	\#N/A	\#N/A	\#N/A

STAGE-DISCHARGE SIZING OF THE SPILLWAY

Project: Blue 3-65 33-32-31 Pad
Basin ID: EDB-1

Crestone Peak Resources Operating, LLC

Blue 3-65 33-32-31 Pad

Minimum Detention Volume
City of Aurora SDDTC, Section 6.33

$$
\begin{array}{rlrl}
\mathrm{A} & =7.36 & \underline{\text { Tributary Area (acres) }} \\
\mathrm{I} & =29.93 & \underline{\text { Developed basin Imperviousness (\%) }} \\
\mathrm{K}_{100} & =0.05325 & \underline{\text { Equation } 6.1} \\
\mathrm{~V}_{100}=\mathrm{K}_{100} * \mathrm{~A} & =0.392 & \underline{\text { acre-ft }(17072 \text { cubic-feet) }} \\
\mathrm{K}_{10} & =0.02653 & \underline{\text { Equation } 6.2} \\
\mathrm{~V}_{10}=\mathrm{K}_{10} * \mathrm{~A} & =0.195 & \underline{\text { acre-ft }(8507 \text { cubic-feet })} \tag{6.2}\\
\mathrm{V}=\mathrm{KA} &
\end{array}
$$

For the 100 -year, $\mathrm{K}_{100}=\left(1.78 \mathrm{I}-0.002 \mathrm{I}^{2}-3.56\right) / 900$
For the 10 -year, $\mathrm{K}_{10}=(0.95 \mathrm{I}-1.90) / 1000$
Where $\mathrm{V}=$ required volume for the 100 - or 10 -year storm (acre-feet)
$\mathrm{I}=$ Developed basin imperviousness (\%)
A = Tributary area (acres)

[^0]: MAP PANELS

 Digital Data Available
 No Digital Data Available
 \triangle Unmapped

 The pin displayed on the map is an approximate point selected by the user and does not represent an authoritative property location.

[^1]: City of Aurora Storm Drainage Design and Technical Criteria, Table 1 values for Runoff Coefficients and Percents Impervious were used in these calculations

[^2]: City of Aurora Storm Drainage Design and Technical Criteria, Table 1 values for Runoff Coefficients and Percents Impervious were used in these calculations.

