Traffic Impact Study

Porteos Distribution Facility (Lot 10B) Aurora, Colorado

Prepared for:
SunCap Property Group, LLC Kimley»"Horn

$$
\text { T R A F F I C } \mathbf{T} \text { I M P A C T }
$$

Porteos Distribution Facility (Lot 10B)

Aurora, Colorado

Prepared for
SunCap Poperty Group, LLC
$112517^{\text {th }}$ Street
Suite 800
Denver, CO 80202

Prepared by
Kimley-Horn and Associates, Inc.
4582 South Ulster Street
Suite 1500
Denver, Colorado 80237
(303) 228-2300

August 2021

This document, together with the concepts and designs presented herein, as an instrument of service, is intended only for the specific purpose and client for which it was prepared. Reuse of and improper reliance on this document without written authorization and adaptation by KimleyHorn and Associates, Inc. shall be without liability to Kimley-Horn and Associates, Inc.

TABLE OF CONTENTS

TABLE OF CONTENTS i
LIST OF TABLES ii
LIST OF FIGURES ii
1.0 EXECUTIVE SUMMARY 1
2.0 INTRODUCTION. 4
3.0 EXISTING AND FUTURE CONDITIONS 6
3.1 Existing Study Area 6
3.2 Existing and Future Roadway Network 6
3.3 Existing Traffic Volumes 9
3.4 Unspecified Development Traffic Growth 9
4.0 PROJECT TRAFFIC CHARACTERISTICS 14
4.1 Trip Generation 14
4.2 Trip Distribution 15
4.3 Traffic Assignment 15
4.4 Total (Background Plus Project) Traffic. 15
5.0 TRAFFIC OPERATIONS ANALYSIS 20
5.1 Analysis Methodology 20
5.2 Key Intersection Operational Analysis 21
5.3 Project Access Operational Analysis 23
5.4 Turn Lane Requirement Analysis 24
5.5 Turn Bay Vehicle Queuing Analysis 27
5.6 Gated Queue Analysis 28
5.7 Pedestrian, Bicycle, and Transit Evaluation 29
6.0 CONCLUSIONS AND RECOMMENDATIONS 32

APPENDICES

Appendix A - Intersection Count Sheets
Appendix B - Background Volume Information
Appendix C - Trip Generation Worksheets
Appendix D - Intersection Analysis Worksheets
Appendix E - Queuing Analysis Worksheets
Appendix F - Conceptual Site Plan

LIST OF TABLES

Table 1 - Porteos Distribution Facility Traffic Generation 14
Table 2 - Level of Service Definitions 20
Table 3 - Jackson Gap Street and $56^{\text {th }}$ Avenue LOS Results 22
Table 4 - Porteos Distribution Facility Access LOS Results 24
Table 5 - Turn Lane Length Analysis Results 28

LIST OF FIGURES

Figure 1 - Vicinity Map. 5
Figure 2 - Surrounding Site Area 7
Figure 3 - Existing Lane Configurations and Control 8
Figure 4 - Existing Traffic Volumes 11
Figure 5-2023 Background Traffic Volumes. 12
Figure 6-2040 Background Traffic Volumes. 13
Figure 7 - Project Trip Distribution 16
Figure 8 - Project Traffic Assignment 17
Figure 9 - 2023 Background Plus Project Traffic Volumes 18
Figure 10-2040 Background Plus Project Traffic Volumes 19
Figure 11 - 2023 Recommended Lane Configurations and Control 30
Figure 12-2040 Recommended Lane Configurations and Control 31

1.0 EXECUTIVE SUMMARY

Porteos Distribution Facility (Lot 10B) is proposed to be located on the northwest corner of the $56^{\text {th }}$ Avenue and Jackson Gap Street intersection in Aurora, Colorado. It is expected that the project will be completed within the next couple of years; therefore, analysis was conducted for the 2023 short term horizon as well as the 2040 long-term horizon per City of Aurora requirements.

The purpose of this traffic study is to identify project traffic generation characteristics and potential project traffic related impacts on the local street system, as well as to develop mitigation measures required for identified impacts. The following intersection was incorporated into this traffic study in accordance with City of Aurora standards and requirements:

- Jackson Gap Street and $56^{\text {th }}$ Avenue

In addition, the two proposed accesses along $56^{\text {th }}$ Avenue and three proposed accesses along Jackson Gap Street were included for evaluation.

Regional access will be provided by Interstate 70 (I-70), Interstate 225 (I-225), E-470, and Pena Boulevard. Primary access to the site will be provided by $56^{\text {th }}$ Avenue and Jackson Gap Street. Direct access to the project is proposed from one full movement access and one right-in/rightout access along $56^{\text {th }}$ Avenue and three full movement accesses along Jackson Gap Street. The proposed west full movement access along $56^{\text {th }}$ Avenue is designated for trucks and is the only access intended for heavy vehicles for the site. However, trucks could temporarily utilize the north access along Jackson Gap Street if internal scanning operations malfunction at the truck access along $56^{\text {th }}$ Avenue. The proposed north full movement access along Jackson Gap Street is designated for vans. The truck and van accesses will have gated stations for entering and exiting the site. The right-in/right-out access along $56^{\text {th }}$ Avenue and the south full movement access along Jackson Gap Street are designated for employee parking. The middle full movement access along Jackson Gap Street is for emergency uses only.

Based on the anticipated facility operations, the overall Porteos Distribution Facility is expected to generate approximately 2,656 daily weekday trips. Of these, 177 trips are expected to occur
during the weekday morning peak hour while 235 trips are expected during the weekday afternoon peak hour.

Distribution of site traffic on the street system was based on the area street system characteristics, existing traffic patterns, anticipated surrounding development in the area, and the proposed access system for the project. Assignment of project traffic was based upon the trip generation described previously and the distributions developed.

Based on the analysis presented in this report, Kimley-Horn believes the proposed Porteos Distribution Facility (Lot 10B) will be successfully incorporated into the existing and future roadway network. The proposed project development and expected traffic volumes resulted in the following recommendations and conclusions:

- With completion of the Porteos Distribution Facility (Lot 10B), the site proposes two accesses along the north side of $56^{\text {th }}$ Avenue and three accesses along the west side of Jackson Gap Street. The west access along $56^{\text {th }}$ Avenue will be designated for trucks and proposes full movements while the east access along $56{ }^{\text {th }}$ Avenue will serve employees and be restricted to right-in/right-out movements. The three accesses along Jackson Gap Street propose to allow full turning movements with the south access designated for employee parking, the middle access used only for emergency uses, and the north access serving the transport vans. The project accesses are recommended to have a R1-1 "STOP" sign installed for the exiting approaches. Single lanes should be sufficient on the exiting approaches at all five accesses; however, providing separate left and right turn lanes for exiting could be considered at the full movement accesses.
- The right-in/right-out access along $56^{\text {th }}$ Avenue, it is recommended a R3-2 No Left Turn sign be placed underneath the STOP sign on the southbound driveway approach of the right-in/right-out access along $56{ }^{\text {th }}$ Avenue. In addition, a "Pork Chop" island is recommended to be installed at this access per City of Aurora requirements. Due to the absence of a raised median within $56^{\text {th }}$ Avenue, a R3-2 No Left Turn sign should be placed on the northeast corner of the right-in/right-out access intersection, visible to eastbound drivers along $56^{\text {th }}$ Avenue to restrict entering left turn movements.
- The truck access along $56^{\text {th }}$ Avenue will require a designated eastbound left turn lane with a length of 275 feet. The south access along Jackson Gap Street will require a northbound left turn lane with a length of 150 feet.
- An eastbound left turn lane with a length of 275 feet should be provided at the intersection of $56^{\text {th }}$ Avenue and Jackson Gap Street while a southbound left turn lane with a length of 150 feet should be provided at this intersection.
- Any on-site and off-site signing and striping improvements should be incorporated into the Civil Drawings and conform to City of Aurora Standards as well as the Manual on Uniform Traffic Control Devices - 2009 Edition (MUTCD).

2.0 INTRODUCTION

Kimley-Horn and Associates, Inc. has prepared this report to document the results of a Traffic Impact Study of future traffic conditions associated with the proposed Porteos Distribution Facility (Lot 10B) to be located on the northwest corner of the $56^{\text {th }}$ Avenue and Jackson Gap Street intersection in Aurora, Colorado. A vicinity map is shown in Figure 1. A conceptual site plan illustrating the development is shown in Appendix F. It is expected that the project will be completed within the next couple of years; therefore, analysis was conducted for the 2023 short term horizon as well as the 2040 long-term horizon per Aurora requirements.

The purpose of this traffic study is to identify project traffic generation characteristics and potential project traffic related impacts on the local street system, as well as to develop mitigation measures required for identified impacts. The following intersection was incorporated into this traffic study in accordance with City of Aurora standards and requirements:

- Jackson Gap Street and $56^{\text {th }}$ Avenue

In addition, the two proposed accesses along $56^{\text {th }}$ Avenue and two proposed accesses along Jackson Gap Street were included for evaluation.

Regional access will be provided by Interstate 70 (I-70), Interstate 225 (I-225), E-470, and Pena Boulevard. Primary access to the site will be provided by $56^{\text {th }}$ Avenue and Jackson Gap Street. Direct access to the project is proposed from one full movement access and one right-in/rightout access along $56^{\text {th }}$ Avenue and three full movement accesses along Jackson Gap Street. The proposed west full movement access along $56^{\text {th }}$ Avenue is designated for trucks and is the only access intended for heavy vehicles for the site. However, trucks could temporarily utilize the north access along Jackson Gap Street if internal scanning operations malfunction at the truck access along $56^{\text {th }}$ Avenue. The proposed north full movement access along Jackson Gap Street is designated for vans. The truck and van accesses will have gated stations for entering and exiting the site. The right-in/right-out access along $56{ }^{\text {th }}$ Avenue and the south full movement access along Jackson Gap Street are designated for employee parking. The middle full movement access along Jackson Gap Street is for emergency uses only.

3.0 EXISTING AND FUTURE CONDITIONS

3.1 Existing Study Area

The existing site is comprised of vacant land. East of the project site is a Fine Airport Parking Lot and a Silvercar by Audi car rental agency. North of the project site is an Ace Car Rental agency. A Costco Depot project is currently being constructed to the northeast of the project. Further north of the project site is the Denver International Airport. The extended area surrounding the project site is mainly comprised of vacant land. The land uses and roadway network surrounding the site are shown in the aerial of Figure 2.

3.2 Existing and Future Roadway Network

Jackson Gap Street provides a single lane of travel in both directions, northbound and southbound, with a 40 mile per hour posted speed limit, and solid yellow centerline striping. It is anticipated that this portion of Jackson Gap Street through the study area will be improved to a three-lane roadway sometime in the future. $56^{\text {th }}$ Avenue provides one lane of travel in each direction, eastbound and westbound, adjacent to the project site with a posted speed limit of 45 miles per hour.

Jackson Gap Street and $56^{\text {th }}$ Avenue is an unsignalized " T "-intersection with stop control along the southbound Jackson Gap Street approach. The eastbound and westbound approaches provide a single approach lane for shared movements. The southbound approach provides a shared left/right turn lane.

The intersection lane configuration and control for the study area key intersections are shown in Figure 3.

3.3 Existing Traffic Volumes

Existing peak hour turning movement counts were conducted at the intersection of Jackson Gap Street and $56^{\text {th }}$ Avenue on Thursday, October 8, 2020. Counts were conducted in 15 -minute intervals during the morning and afternoon peak hours of adjacent street traffic from 7:00 AM to 9:00 AM and 4:00 PM to 6:00 PM on this count date.

Due to the Jackson Gap Street and $56^{\text {th }}$ Avenue counts being collected during the COVID-19 Pandemic, an adjustment factor was determined in order to grow the counts to pre-COVID conditions. Based on the count comparison with the Jackson Gap Street and Jackson Gap Way volumes, it was determined that a 1.09 adjustment factor be applied to the morning peak hour volumes and 1.12 adjustment factor be applied to afternoon peak hour existing volumes. In addition, a two (2) percent City of Aurora standard annual growth rate was applied to Jackson Gap Street and Jackson Gap way to generate existing 2020 volumes. The existing and adjusted existing peak hour turning movement counts are shown in Figure 4 with count sheets provided in Appendix A.

3.4 Unspecified Development Traffic Growth

To generate background traffic volumes in year 2023, the City of Aurora standard annual growth rate of two (2) percent was applied to the existing turning movement counts. In addition, site generated traffic volumes from the "Porteos - Project Pearl in Aurora", September 2020, "Aurora Costco Depot Transportation Impact Study", August 2019, and "Ryder Truck Facility Traffic Impact Study", April 2020 were included as background traffic in 2023. The short-term and long-term total traffic volumes from the Porteos - Project Pearl study were used as a basis for 2023 and 2040 background traffic volumes along Jackson Gap Street in this study. Shortterm background traffic volumes from the Porteos - Project Pearl study were based on volumes from the Jackson Gap ISP Traffic Study (2020) which used NEATS Refresh modeling and Porteos Master TIS Update (2017). The long-term background traffic volumes from the Porteos - Project Pearl study were estimated using traffic volume projections from the Jackson Gap ISP Traffic Study with the removal of estimated trips within PAs 8a and 8b associated with the Project Pearl site from the Porteos Master Plan Traffic Study.

2040 total traffic volumes from the Aurora Costco Depot study were used as a basis to determine 2040 background traffic volumes along $56^{\text {th }}$ Avenue at the intersection with Jackson

Gap Street. Long-term background traffic volumes from the Aurora Costco Depot were based on volumes from the Porteos Master Transportation Plan, NEATS Refresh, Groot Distribution Center TIS, and JAG Logistics Center at DIA TIS. Applicable documents from the Porteos Project Pearl, Aurora Costco Depot, and Ryder Truck traffic studies are included in Appendix B. The calculated background traffic volumes for 2023 and 2040 are shown in Figure 5 and Figure 6, respectively.

PORTEOS DISTRIBUTION FACILITY AURORA, CO

FIGURE 4 EXISTING ADJUSTED TRAFFIC VOLUMES

LEGEND

- Study Area Key Intersection

XXX (XXX) Weekday AM(PM)
Peak Hour Traffic Volumes
XX,X00 Daily Traffic Volume
FIGURE 5

LEGEND

- Study Area Key Intersection

XXX(XXX) Weekday AM(PM)
Peak Hour Traffic Volumes
区X,X00 Daily Traffic Volume

4.0 PROJECT TRAFFIC CHARACTERISTICS

4.1 Trip Generation

Site-generated traffic estimates are determined through a process known as trip generation. The proposed distribution processing facility is anticipated to be completed within a couple years with the facility opening sometime in 2023. Given the specific nature of this site, a methodology separate from the typical ITE Trip Generation Manual and Handbook was developed based on user specific data to determine the trip generation potential of such sites. The trip projections for package distribution facility are based on the anticipated employee automobile numbers, packing and delivery vans, spot trailers, and linehaul truck numbers associated with the project have been calculated based on project build-out year. The proposed Porteos Distribution Facility (Lot 10B) facility is anticipated to include an approximate 479,000 square feet of distribution facility. Trip generation rates and equations were determined by other sites with the same land use.

Based on the anticipated facility operations and user specific data provided, the overall Porteos Distribution Facility is expected to generate approximately 2,656 daily weekday trips. Of these, 177 trips are expected to occur during the weekday morning peak hour while 235 trips are expected during the weekday afternoon peak hour. Site specific trips have been allocated into passenger vehicle trips, truck trips, and delivery vehicle trips. Table 1 summarizes the estimated trip generation for the proposed development. The trip generation worksheet is included in Appendix C.

Table 1 - Porteos Distribution Facility Traffic Generation

Land Use	Vehicle Trips						
		Weekday AM Peak Hour				Weekday PM Peak Hour	
			In	Out	Total	In	Out
Total							
Passenger Vehicles		30	68	98	68	95	163
Trucks		27	30	57	22	35	57
Delivery Vehicles (Vans)	152	0	22	22	15	0	15
Total Trips Generated	$\mathbf{2 , 6 5 6}$	$\mathbf{5 7}$	$\mathbf{1 2 0}$	$\mathbf{1 7 7}$	$\mathbf{1 0 5}$	$\mathbf{1 3 0}$	$\mathbf{2 3 5}$

4.2 Trip Distribution

Distribution of site traffic on the street system was based on the area street system characteristics, existing traffic patterns, existing and anticipated surrounding demographic information, expected roadway improvements, and the proposed access system for the project. The directional distribution of traffic is a means to quantify the percentage of site-generated traffic that approaches the site from a given direction and departs the site back to the original source. Project trip distribution accounts for trucks having two designated accesses, delivery vehicles having one access, and the associate passenger vehicle lot having two access locations. The project trip distribution is illustrated in Figure 7.

4.3 Traffic Assignment

Traffic assignment was obtained by applying the project trip distribution to the estimated traffic generation of the development shown in Table 1. Site traffic assignment for the proposed Porteos Distribution Facility is shown in Figure 8.

4.4 Total (Background Plus Project) Traffic

Site traffic volumes were added to the background volumes to represent estimated traffic conditions for the short term 2023 horizon and long term 2040 horizon. These total traffic volumes for the site are illustrated for the 2023 and 2040 horizon years in Figures 9 and 10, respectively.

5.0 TRAFFIC OPERATIONS ANALYSIS

Kimley-Horn's analysis of traffic operations in the site vicinity was conducted to determine potential capacity deficiencies in the 2023 and 2040 development horizons at the identified key intersections and access driveways. The acknowledged source for determining overall capacity is the current edition of the Highway Capacity Manual (HCM) ${ }^{1}$.

5.1 Analysis Methodology

Capacity analysis results are listed in terms of Level of Service (LOS). LOS is a qualitative term describing operating conditions a driver will experience while traveling on a particular street or highway during a specific time interval. It ranges from A (very little delay) to F (long delays and congestion). According to City of Aurora guidelines for signalized intersections, individual movements may be allowed to fall to LOS E, but in most cases the overall intersection must operate (or be projected to operate) at a LOS D or better during AM and PM peak periods. If the existing LOS for an intersection is less than LOS D, potential alternatives to improve the intersection should be provided to achieve LOS D or maintain the existing critical lane volume with the addition of site generated traffic. Minor movements at unsignalized intersections, such as left turns onto a major arterial from a side street, may be allowed to fall below LOS D pending the specific conditions. Movements which have a light traffic demand and a viable travel alternative may be allowed to fall below LOS D. Table 2 shows the definition of level of service for signalized and unsignalized intersections.

Table 2 - Level of Service Definitions

Level of Service	Signalized Intersection Average Total Delay (sec/veh)	Unsignalized Intersection Average Total Delay (sec/veh)
A	≤ 10	≤ 10
B	>10 and ≤ 20	>10 and ≤ 15
C	>20 and ≤ 35	>15 and ≤ 25
D	>35 and ≤ 55	>25 and ≤ 35
E	>55 and ≤ 80	>35 and ≤ 50
F	>80	>50

[^0][^1]Study area intersections were analyzed based on average total delay analysis for signalized and unsignalized intersections. Under the unsignalized analysis, the LOS for a two-way stopcontrolled intersection is determined by the computed or measured control delay and is defined for each minor movement. LOS for a two-way stop-controlled intersection is not defined for the intersection as a whole. LOS for a signalized and all-way stop controlled intersection is defined for each approach and for the overall intersection.

5.2 Key Intersection Operational Analysis

Calculations for the level of service at the key intersections and project access driveways for the study area are provided in Appendix D. The existing year analysis is based on the lane geometry and intersection control shown in Figure 3. Existing peak hour factors were used for the existing and 2023 conditions, while the recommended HCM urban peak hour factor of 0.92 averaged with the existing peak hour was used for the 2040 analysis. A heavy vehicle usage of 13 percent was utilized during the morning peak hours and 10 percent was utilized during the afternoon peak hours based on data collected. In addition, the in and out movements at the truck accesses were analyzed with a heavy vehicle percentage of 100 while the in and out movement at the van and passenger vehicle accesses were analyzed with a heavy vehicle usage of two (2) percent. Synchro traffic analysis software was used to analyze the study area intersections and access driveways. The Synchro Highway Capacity Manual (HCM) methodology reports were used to analyze intersection delay and level of service.

Jackson Gap Street and $56^{\text {th }}$ Avenue

The existing T-intersection Jackson Gap Street and $56^{\text {th }}$ Avenue is unsignalized and operates with stop control along the southbound Jackson Gap Street approach. Based on the turn lane analysis, an eastbound left turn lane is required to meet Aurora guidelines; therefore, the intersection has been analyzed with an eastbound left turn lane throughout the long-term 2040 horizon. All movements at this intersection currently operate acceptably with LOS A during the morning and afternoon peak hours. With the addition of project traffic, all movements at this intersection are expected to operate acceptably with LOS C or better during the peak hours in 2023. It is recommended that the southbound approach of Jackson Gap Street provides separate left and right turn lanes.

The Northeast Area Transportation Study (NEATS) Refresh identifies $56^{\text {th }}$ Avenue as a six-lane facility (three through lanes in each direction) by year 2040. Therefore, $56^{\text {th }}$ Avenue was studied with three through lanes in each direction at this intersection in 2040. With the recommended lane configurations, all movements at this intersection are expected to continue to operate acceptably during the peak hours in 2040. Table 3 provides the results of the level of service at this intersection.

Table 3 - Jackson Gap Street and $56^{\text {th }}$ Avenue LOS Results

Scenario	AM Peak Hour		PM Peak Hour	
	Delay (sec/veh)	LOS	Delay (sec/veh)	LOS
2020 Existing Eastbound Left Southbound Approach	$\begin{aligned} & 7.6 \\ & 8.8 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \hline \end{aligned}$	$\begin{array}{r} 7.7 \\ 9.9 \\ \hline \end{array}$	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \hline \end{aligned}$
2023 Background\# Eastbound Left Southbound Left Southbound Right	$\begin{gathered} 8.0 \\ 17.2 \\ 11.4 \\ \hline \end{gathered}$	$\begin{aligned} & \text { A } \\ & \text { C } \\ & \hline \end{aligned}$	$\begin{aligned} & 8.2 \\ & 17.0 \\ & 10.7 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { A } \\ & \text { C } \\ & \hline \end{aligned}$
2023 Background Plus Project\# Eastbound Left Southbound Left Southbound Right	$\begin{gathered} 8.1 \\ 19.9 \\ 12.7 \\ \hline \end{gathered}$	$\begin{aligned} & \text { A } \\ & \text { C } \\ & \text { B } \end{aligned}$	$\begin{gathered} 8.4 \\ 21.7 \\ 11.2 \\ \hline \end{gathered}$	$\begin{aligned} & \text { A } \\ & \text { C } \\ & \text { B } \end{aligned}$
2040 Background\#\# Eastbound Left Southbound Left Southbound Right	$\begin{aligned} & 17.5 \\ & 26.0 \\ & 20.7 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{C} \\ & \mathrm{D} \\ & \mathrm{C} \end{aligned}$	$\begin{aligned} & 13.8 \\ & 20.7 \\ & 21.6 \end{aligned}$	$\begin{aligned} & \mathrm{B} \\ & \mathrm{C} \\ & \mathrm{C} \\ & \hline \end{aligned}$
2040 Background Plus Project\#\# Eastbound Left Southbound Left Southbound Right	$\begin{aligned} & 18.9 \\ & 31.1 \\ & 26.2 \end{aligned}$	$\begin{aligned} & C \\ & D \\ & D \\ & D \end{aligned}$	$\begin{aligned} & 15.7 \\ & 26.4 \\ & 25.5 \end{aligned}$	$\begin{aligned} & \mathrm{C} \\ & \mathrm{D} \\ & \mathrm{C} \end{aligned}$

\# = Addition of an EBL and SBL Turn Lanes; \#\# = Provide Eastbound and Westbound Through Lanes

5.3 Project Access Operational Analysis

With completion of the Porteos Distribution Facility (Lot 10B), the site proposes two accesses along the north side of $56^{\text {th }}$ Avenue and three accesses along the west side of Jackson Gap Street. The west access along $56^{\text {th }}$ Avenue will be designated for trucks and proposes full movements while the east access along $56^{\text {th }}$ Avenue will serve employees and be restricted to right-in/right-out movements. The three accesses along Jackson Gap Street propose to allow full turning movements with the south access designated for employee parking, the middle access used only for emergency purposes, and the north access serving the transport vans.

The project accesses are recommended to have a R1-1 "STOP" sign installed for the exiting approaches. For the right-in/right-out access along $56^{\text {th }}$ Avenue, it is recommended a R3-2 No Left Turn sign be placed underneath the STOP sign on the southbound driveway approach. In addition, a "Pork Chop" island is recommended to be installed at this access per City of Aurora requirements. Due to the absence of a raised median within $56^{\text {th }}$ Avenue, a R3-2 No Left Turn sign should be placed on the northeast corner of the right-in/right-out access intersection, visible to eastbound drivers along $56^{\text {th }}$ Avenue to restrict entering left turn movements. The truck access along $56^{\text {th }}$ Avenue will require a designated eastbound left turn lane. The south access along Jackson Gap Street will require a northbound left turn lane. Single lanes should be sufficient on the exiting approaches at all five accesses; however, providing separate left and right turn lanes for exiting could be considered at the full movement accesses.

With the recommended lane configurations and control, all movements at the access intersections are expected to operate acceptably with LOS C or better during the peak hours throughout 2040. Table 4 provides the results of the level of service at this intersection.

Table 4 - Porteos Distribution Facility Access LOS Results

Intersection	2023Background Plus Project				2040Background Plus Project			
	AM Peak Hour		PM Peak Hour		AM Peak Hour		PM Peak Hour	
	Delay (sec/ veh)	LOS						
56 ${ }^{\text {th }}$ Avenue West Access (Trucks) Eastbound Left Southbound Approach	$\begin{gathered} 9.6 \\ 16.7 \\ \hline \end{gathered}$	$\begin{aligned} & \text { A } \\ & \text { C } \\ & \hline \end{aligned}$	$\begin{array}{r} 10.0 \\ 18.3 \\ \hline \end{array}$	$\begin{aligned} & \text { A } \\ & \text { C } \\ & \hline \end{aligned}$	$\begin{array}{r} 12.9 \\ 16.6 \\ \hline \end{array}$	$\begin{aligned} & \mathrm{B} \\ & \mathrm{C} \\ & \hline \end{aligned}$	$\begin{array}{r} 13.4 \\ 18.3 \\ \hline \end{array}$	B C
$56^{\text {th }}$ Ave East Access (Employees) Southbound Right	10.3	B	11.0	B	12.7	B	13.4	B
Jackson Gap Street South Access (Employees) Northbound Left Eastbound Approach	$\begin{gathered} 7.8 \\ 10.6 \\ \hline \end{gathered}$	$\begin{aligned} & \text { A } \\ & \text { B } \\ & \hline \end{aligned}$	$\begin{gathered} 7.8 \\ 11.0 \\ \hline \end{gathered}$	$\begin{aligned} & \text { A } \\ & \text { B } \\ & \hline \end{aligned}$	$\begin{gathered} 7.9 \\ 11.4 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~B} \\ & \hline \end{aligned}$	$\begin{gathered} 8.3 \\ 12.7 \\ \hline \end{gathered}$	A B
Jackson Gap Street North Access (Van Access) Northbound Left Eastbound Approach	$\begin{gathered} 8.9 \\ 12.5 \\ \hline \end{gathered}$	$\begin{aligned} & \text { A } \\ & \text { B } \\ & \hline \end{aligned}$	$\begin{gathered} 9.0 \\ 12.8 \end{gathered}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~B} \\ & \hline \hline \end{aligned}$	$\begin{gathered} 9.2 \\ 14.2 \\ \hline \end{gathered}$	$\begin{aligned} & \text { A } \\ & \text { B } \\ & \hline \end{aligned}$	$\begin{gathered} 9.8 \\ 16.3 \\ \hline \end{gathered}$	A C

5.4 Turn Lane Requirement Analysis

The City of Aurora currently adheres to the Colorado Department of Transportation (CDOT) State Highway Access Code (SHAC) guidelines to determine if turn lanes are warranted for intersections within the project limits. CDOT classifies their state highways based on roadway types. The Non-Rural Arterial Category NR-B (moderate travel speeds and relatively moderate to high traffic volumes) was assigned to $56^{\text {th }}$ Avenue based on matching the characteristics of the CDOT roadways and the Non-Rural Arterial Category NR-C (low to moderate travel speeds and moderate volumes) was assigned to Jackson Gap Street.

According to the State Highway Access Code for category NR-B and NR-C roadways, the following thresholds apply for an auxiliary lane:

- A left turn lane with storage length plus taper is required for any access with a projected peak hour left ingress turning volume greater than 25 vehicles per hour (vph). If the posted speed limit is greater than 40 miles per hour, a deceleration lane and taper is required for any access with a projected peak hour left ingress turning volumes greater than 10 vph . The taper length will be included within the deceleration length.
- A right turn lane with storage length plus taper is required for any access with a projected peak hour right ingress turning volume greater than 50 vehicles per hour (vph).

If the posted speed limit is greater than 40 miles per hour, a right turn lane deceleration lane and taper is required for any access with a project peak hour right ingress turning volume greater than 25 vehicles per hour.
$56^{\text {th }}$ Avenue currently has a posted speed limit of 45 miles per hour within the project limits. Based on the current speed limits and 2023 traffic volume projections, right turn lane and left turn lane requirements at the project intersections along $56^{\text {th }}$ Avenue are as follows:

$56^{\text {th }}$ Avenue and Jackson Gap Street

- An eastbound left turn lane is warranted along $56^{\text {th }}$ Avenue at the Jackson Gap Street intersection based on projected 2023 background plus project traffic volumes being 230 eastbound left turns during the peak hour and the threshold being greater than 10 vph . Based on a speed limit of 45 mph , a left turn deceleration length of 435 feet should be provided at this location. Since the taper length is incorporated within the deceleration lane length, an eastbound left turn lane length of 275 feet plus a 160 -foot taper (13.5 to 1 ratio).
- A westbound right turn lane along $56^{\text {th }}$ Avenue is not warranted at the $56^{\text {th }}$ Avenue and Jackson Gap Street intersection based on projected 2023 background plus project traffic volumes being 25 westbound right turns during the peak hour and the threshold being greater than 25 vph .

$56^{\text {th }}$ Avenue and Truck Access

- An eastbound left turn lane is warranted along $56^{\text {th }}$ Avenue at the Truck Full Access intersection based on projected 2023 background plus project traffic volumes being 20 eastbound left turns during the peak hour and the threshold being greater than 10 vph . Based on a speed limit of 45 mph , a left turn deceleration length of 435 feet should be provided at this location. Since the taper length is incorporated within the deceleration lane length, an eastbound left turn lane length of 275 feet plus a 160 -foot taper (13.5 to 1 ratio).
- A westbound right turn lane along $56^{\text {th }}$ Avenue is not warranted at the $56^{\text {th }}$ Avenue and Truck Full Access intersection based on projected 2023 background plus project traffic volumes being 10 westbound right turns during the peak hour and the threshold being greater than 25 vph .
- A westbound right turn lane along $56^{\text {th }}$ Avenue is not warranted at the $56^{\text {th }}$ Avenue and Employee right-in/right-out access intersection based on projected 2023 background plus project traffic volumes being three (3) westbound right turns during the peak hour and the threshold being greater than 25 vph .

Jackson Gap Street currently has a posted speed limit of 40 miles per hour within the project limits. Based on the current speed limits and 2023 traffic volume projections, right turn lane and left turn lane requirements at the project intersections along Jackson Gap Street are as follows:

Jackson Gap Street and Employee Full Access

- A northbound left turn lane is warranted along Jackson Gap Street at the Employee Full Access intersection based on projected 2023 background plus project traffic volumes being 45 northbound left turns during the peak hour and the threshold being greater than 25 vph . Based on a speed limit of 40 mph , the requirement for this left turn lane is storage length plus taper. The storage length requirement is one foot per turning vehicle movement during the peak hour. This equates to 45 feet of storage length based on projected 2023 background plus project traffic volumes being 45 northbound left turns during the peak hour; however, a City of Aurora minimum left turn storage length of 150 feet plus a 100-foot taper should be provided at this location.
- A southbound right turn lane along Jackson Gap Street is not warranted at the Employee Full Access intersection based on projected 2023 background plus project traffic volumes being 20 southbound right turns during the peak hour and the threshold being greater than 50 vph .

Jackson Gap Street and Van Access

- A northbound left turn lane is not warranted along Jackson Gap Street at the Van Access intersection based on projected 2023 background plus project traffic volumes being 15 northbound left turns during the peak hour and the threshold being greater than 25 vph .
- A southbound right turn lane along Jackson Gap Street is not warranted at the Van Access intersection based on projected 2023 background plus project traffic volumes
being five (5) southbound right turns during the peak hour and the threshold being greater than 50 vph .

5.5 Turn Bay Vehicle Queuing Analysis

A vehicle queuing analysis was conducted for turn lanes at the study area intersections. The queuing analysis was performed using the Synchro analysis software presenting the results of the 95th percentile queue length. Results of the vehicle queuing analysis are shown in the following Table 5 with calculations provided in the intersection operational outputs located in Appendix D.

Table 5 - Turn Lane Length Analysis Results

Intersection Turn Lane	Existing Turn Lane Length (feet)	2023 Calculated Queue Length (feet)	2023 Recommended Turn Lane Length (feet)	2040 Calculated Queue Length (feet)	2040 Recommended Turn Lane Length (feet)
Jackson Gap St \& 56 ${ }^{\text {th }}$ Avenue Eastbound Left Southbound Left	DNE DNE	$\begin{aligned} & 25 \\ & 25^{\prime} \end{aligned}$	$\begin{gathered} 150^{\prime}\left(275{ }^{\prime}\right) \\ 150^{\prime}\left(25^{\prime}\right) \\ \hline \end{gathered}$	$\begin{aligned} & 100^{\prime} \\ & 125^{\prime \prime} \end{aligned}$	$\begin{aligned} & 150^{\prime}\left(275^{\prime}\right) \\ & 150^{\prime}\left(50^{\prime}\right) \\ & \hline \end{aligned}$
$56^{\text {th }}$ Avenue West Access (Trucks) Eastbound Left Southbound Approach	DNE DNE	$\begin{aligned} & 50^{\prime} \\ & 50 \end{aligned}$	$\begin{gathered} 150^{\prime}\left(275^{\prime}\right) \\ 50^{\prime} \end{gathered}$	$\begin{gathered} 50^{\prime} \\ 100^{\prime} \end{gathered}$	$\begin{gathered} 150 \\ 100^{\prime}(275 \prime) \end{gathered}$
Jackson Gap Street South Access (Employees) Northbound Left Eastbound Approach	DNE DNE	$\begin{aligned} & 25 \\ & 25 \\ & 25 \end{aligned}$	$\begin{gathered} 150^{\prime}\left(50^{\prime}\right) \\ 50^{\prime} \\ \hline \end{gathered}$	$\begin{aligned} & 25 \\ & 25 \end{aligned}$	$\begin{gathered} 1500^{\prime}\left(50^{\prime}\right) \\ 50^{\prime} \\ \hline \end{gathered}$
Jackson Gap Street North Access (Van Access) Eastbound Approach	DNE	25'	50'	25'	50'

$X X X^{\prime}=95^{\text {th }}$ Queues or City of Aurora Minimum Length Standard (XXX' $=$ CDOT Length Requirement) DNE = Does Not Exist

As shown in the queuing table, turn lanes currently do not exist at the key intersection, but all new auxiliary turn lanes should be constructed and designated with the lengths reported in Table 5.

Based on the results of the intersection operational and turn lane analysis, the recommended lane configurations and control of the study key intersections are shown for the 2023 project buildout year in Figure 11 and for the 2040 long term horizon in Figure 12.

5.6 Gated Queue Analysis

The project proposes two gate stations for entering and exiting: the truck and van delivery area.
Therefore, a gated entry vehicle queuing analysis was performed to ensure trucks and delivery vans will not spillback into the public streets.

The truck access along $56^{\text {th }}$ Avenue will have a gate station located approximately 550 feet from the driveway entrance while the van access along Jackson Gap Street will have a gate station located approximately 100 feet from the driveway entrance. During the peak hour of the generator (not the peak hour of the adjacent street), a maximum of 51 trucks are anticipated to enter the facility. This volume was used to analyze the queuing storage requirements. Since it is unreasonable to assume that vehicles will arrive at a constant rate throughout the truck peak
hour, a Poisson distribution storage equation was used to account for the variations in arrival rates. The gate for the truck access is anticipated to be operated by an overhead truck scanner and will automatically open a truck approaches the gate Therefore, the service rate is anticipated to be in the range of 10-15 seconds. However, to provide a conservative analysis, a service rate of 60 seconds per truck was utilized within the queuing analysis as the time identified to approach the gate and for the gate to open. Based on these volumes and service rate, it was calculated that a storage length of three (3) WB-67 truck (67 feet) is needed on site prior to the primary truck gate station. Therefore, it is anticipated that the truck queueing will be sufficiently accommodated on site without negative impact.

The gate for the van access is anticipated to be utilized with a key card or a vehicle scanner and will open once a van is scanned (or key card is used). It is anticipated that 15 delivery vehicles will arrive to the van access gated entry during the peak hour of the generator based on the trip generation calculations. This volume was used to analyze the queuing storage requirements. A service rate of 30 seconds per van was utilized within the queuing analysis as the time identified scanning an entry card. Based on these volumes and service rate, it was calculated that a storage length of one van (30 feet) is needed on site prior to the gate station; therefore, it is anticipated that the van queueing will be sufficiently accommodated on site without negative impact. Based on City of Aurora requirements, it is recommended that the gate to the van access be located 60 feet (two vehicle lengths) west of the Jackson Gap Street (measured from edge of pavement).

The gated entry vehicle queuing worksheets are included in Appendix E.

5.7 Pedestrian, Bicycle, and Transit Evaluation

To address components of full transportation and mobility operations, pedestrian, bicycle, and transit evaluations were conducted. There are not any sidewalk facilities currently along $56^{\text {th }}$ Avenue and Jackson Gap Street. Sidewalks are planned for construction by others as part of Jackson Gap Street and $56^{\text {th }}$ Avenue planned improvements. $56^{\text {th }}$ Avenue and Jackson Gap Street do not currently provide bike lane facilities. The nearest transit operations to the site include the RTD 61 ${ }^{\text {st }}$ and Pena Station which runs the A-Line in the area.

6.0 CONCLUSIONS AND RECOMMENDATIONS

Based on the analysis presented in this report, Kimley-Horn believes the proposed Porteos Distribution Facility (Lot 10B) will be successfully incorporated into the existing and future roadway network. The proposed project development and expected traffic volumes resulted in the following recommendations and conclusions:

- With completion of the Porteos Distribution Facility (Lot 10B), the site proposes two accesses along the north side of $56^{\text {th }}$ Avenue and three accesses along the west side of Jackson Gap Street. The west access along $56^{\text {th }}$ Avenue will be designated for trucks and proposes full movements while the east access along $56{ }^{\text {th }}$ Avenue will serve employees and be restricted to right-in/right-out movements. The three accesses along Jackson Gap Street propose to allow full turning movements with the south access designated for employee parking, the middle access used only for emergency uses, and the north access serving the transport vans. The project accesses are recommended to have a R1-1 "STOP" sign installed for the exiting approaches. Single lanes should be sufficient on the exiting approaches at all five accesses; however, providing separate left and right turn lanes for exiting could be considered at the full movement accesses.
- The right-in/right-out access along $56^{\text {th }}$ Avenue, it is recommended a R3-2 No Left Turn sign be placed underneath the STOP sign on the southbound driveway approach of the right-in/right-out access along $56{ }^{\text {th }}$ Avenue. In addition, a "Pork Chop" island is recommended to be installed at this access per City of Aurora requirements. Due to the absence of a raised median within $56^{\text {th }}$ Avenue, a R3-2 No Left Turn sign should be placed on the northeast corner of the right-in/right-out access intersection, visible to eastbound drivers along $56^{\text {th }}$ Avenue to restrict entering left turn movements.
- The truck access along $56^{\text {th }}$ Avenue will require a designated eastbound left turn lane with a length of 275 feet. The south access along Jackson Gap Street will require a northbound left turn lane with a length of 150 feet.
- An eastbound left turn lane with a length of 275 feet should be provided at the intersection of $56^{\text {th }}$ Avenue and Jackson Gap Street while a southbound left turn lane with a length of 150 feet should be provided at this intersection.
- Any on-site and off-site signing and striping improvements should be incorporated into the Civil Drawings and conform to City of Aurora Standards as well as the Manual on Uniform Traffic Control Devices - 2009 Edition (MUTCD).

APPENDICES

APPENDIX A

Intersection Count Sheets

Porteos Distribution Facility

Jackson Gap Street Through Volumes		
Scenario	AM Peak	PM Peak
2019 Existing (Pre-COVID - 2019-10-15)	111	133
2019 to 2020 Grown Existing	113	136
2020 Counts (During COVID - 2020-10-08)	104	121
Percent Change	-8.14%	-10.81%
Growth Adjustment	8.87%	12.12%
Adjustment Factor	1.09	1.12

APPENDIX B

Background Volume Information

Aurora Costco Depot

Aurora, Colorado

```
Prepared For:
Peter Kahn
AVP of Real Estate Corporation
Costco Wholesale Corporation
999 Lake Drive
Issaquah, WA 98027
Prepared By:
Kittelson \& Associates, Inc.
101 South Capitol Boulevard, Suite 600
Boise, ID 83702
(208) 338-2683
Project Principal: Brian Ray, PE
Project Manager: Andy Daleiden, PE
Project Team: Lauren Hunt, Alicia Hunter, and Yihang Sui
```


Project No. 24055

August 2019

- All study access points are projected to operate acceptably at LOS D or better during the year 2020 total traffic conditions (weekday AM and PM peak hours).
- The Manual on Uniform Traffic Control Devices (MUTCD, $9^{\text {th }}$ Edition) eight-hour, fourhour, and peak-hour signal warrants are not met at the proposed access points on $64^{\text {th }}$ Avenue and Powhaton Road.

Year 2040 Background and Total Traffic Conditions

- Based on the Porteos Master Transportation Plan, NEATS Refresh, Groot Distribution Center TIS, and JAG Logistics Center at DIA TIS, there are several planned roadway improvements for $64^{\text {th }}$ Avenue, $60^{\text {th }}$ Avenue, $56^{\text {th }}$ Avenue, Powhaton Road, and Jackson Gap Street. Additionally, traffic signals are planned at the following intersections: $64^{\text {th }}$ Avenue/Jackson Gap Street, $64^{\text {th }}$ Avenue/Powhaton Road, $60^{\text {th }}$ Avenue/Powhaton Road, and $56^{\text {th }}$ Avenue/Powhaton Road. These improvements are anticipated to accommodate the traffic volumes associated with the Porteos Master Plan, which includes the Costco Depot site as part of that plan.
- The Porteos Master Plan assumed a development size and trip generation of 1,322,900 square-feet and 7,280 daily trips for the planning area that includes the approved Groot Distribution Center and proposed Costco Depot sites. Based on the approved Groot Distribution Center TIS and proposed Costco Depot TIS, the total size of these two developments is 234,385 square-feet less than the development size assumed in the Porteos Master Plan. These two developments are estimated to generate 3,162 less daily trips than the trip generation assumed in the Porteos Master Plan. Therefore, the approved Groot Distribution Center and proposed Costco Depot will have a significantly smaller footprint and trip impact to the surrounding roadway network than estimated in the Porteos Master Plan for PA-7.
- The proposed Costco Depot and approved Groot Distribution Center daily traffic volumes are estimated to be less than what was assumed in the Porteos Master Plan TIS, NEATS Refresh, and JAG Logistics Center at DIA TIS. Therefore, the planned study area roadways are expected to have adequate capacity to accommodate the daily traffic volumes from the proposed Costco Depot.
- All study intersections are planned to be signalized by the year 2040. With traffic signals in place, all study intersections continue to operate acceptably at LOS D or better during the year 2040 background and total traffic conditions (weekday AM and PM peak hours).
- The Manual on Uniform Traffic Control Devices (MUTCD, $9^{\text {th }}$ Edition) eight-hour, fourhour, and peak-hour signal warrants are met at the study intersections.
- All study access points are projected to operate acceptably at LOS D or better during the year 2040 total traffic conditions (weekday AM and PM peak hours).
- The Manual on Uniform Traffic Control Devices (MUTCD, $9^{\text {th }}$ Edition) eight-hour, fourhour, and peak-hour signal warrants are not met at the proposed access points on $64^{\text {th }}$ Avenue and Powhaton Road.

Lane Configurations

Lane Configurations

T R A F F I C I M P A C T

Ryder Truck Facility (Porteos Subdivision Filing 4)

A rora Colorado

Prepared for Ware Malcomb
$\square 0$ S \square roadwa \square
S ite 2
Denver CO 020

Prepared by
Kimley-Horn and Associates, Inc.
45 2 So th \square lster Street
S -ite 1500
Denver-Colorado 02
$\square 0 \square 22 \square-2 \sqsubset 00$

April 2020

This document, together with the concepts and designs presented herein, as an instrument of service, is intended only for the specific purpose and client for which it was prepared. Reuse of and improper reliance on this document without written authorization and adaptation by KimleyHorn and Associates, Inc. shall be without liability to Kimley-Horn and Associates, Inc.

TRANSPORTATION IMPACT STUDY

Porteos - Project Pearl in Aurora

Prepared for:
Ryan Companies
533 South Third Street, Suite 100
Minneapolis, MN 554I5

Prepared by:
Felsburg Holt \& Ullevig
6400 S Fiddlers Green Circle, Suite I500
Greenwood Village, CO 801II
303.72I.I440

Principal: Christopher J. Fasching, PE, PTOE
Project Manager: Philip Dunham, PE, PTOE

FHU Reference No. I20196-01
September 2020

LEGEND

$X X X(X X X)$	$=$ AM(PM) Peak Hour Traffic Volumes
$X X X X$	$=$ Daily Traffic Volumes
$\mathbf{X} / \mathbf{X}=$	AM/PM Peak Hour Signalized
	Intersection Level of Service
$\mathbf{x / x}$	$=$AM/PM Peak Hour Unsignalized Intersection Level of Service
$=$	Stop Sign
$\mathbf{8}$	$=$ Traffic Signal

LEGEND

XXX(XXX)	$=$ AM(PM) Peak Hour Traffic Volumes
$X X X X$	$=$ Daily Traffic Volumes
\mathbf{X} / \mathbf{X}	$=$ AM/PM Peak Hour Signalized
	Intersection Level of Service
$\mathbf{x / x}$	$=$AM/PM Peak Hour Unsignalized Intersection Level of Service
	$=$ Stop Sign
$\mathbf{8}$	$=$ Traffic Signal

NOTE: Drawing Not to Scale

Tuesday, October 15, 2019 7:15-8:15 AM (4:15-5:15 PM)

RYDER (PORTEOS SUBDIVISION FILING 4) AURORA, CO

FIGURE 4 2019 EXISTING TRAFFIC VOLUMES

APPENDIX C

Trip Generation Worksheets

Cars					Truds				DeliveryVehides				Total		
AverageWeekcay						Averag	eekctay			Averag	eekcay		Average Weekday		
	In	Out	Total	\%Usage	In	Out	Total	\%Usage	In	Out	Total	\%Usage	In	Out	Total
00:00	8	0	8	20.4\%	22	9	31	79.6\%	0	0	0	0.0\%	30	9	39
00:30	0	5	5	11.9\%	25	11	36	88.1\%	0	0	0	0.0\%	25	15	41
01:00	5	5	10	18.6\%	26	16	42	81.4\%	0	0	0	0.0\%	31	21	52
01:30	5	0	5	13.2\%	16	15	32	86.8\%	0	0	0	0.0\%	21	15	37
02:00	0	0	0	0.0\%	18	21	38	100.0\%	0	0	0	0.0\%	18	21	38
02:30	0	0	0	0.0\%	26	18	44	100.0\%	0	0	0	0.0\%	26	18	44
03:00	15	32	48	56.9\%	19	17	36	43.1\%	0	0	0	0.0\%	35	49	84
03:30	19	40	59	57.0\%	18	26	45	43.0\%	0	0	0	0.0\%	38	66	104
04:00	9	8	17	29.8\%	17	23	40	70.2\%	0	0	0	0.0\%	26	31	58
04:30	5	0	5	11.6\%	21	16	37	88.4\%	0	0	0	0.0\%	26	16	42
05:00	5	5	10	18.9\%	24	17	42	81.0\%	0	0	1	1.9\%	29	22	51
05:30	21	5	26	40.9\%	21	17	37	59.0\%	0	0	1	1.6\%	42	21	63
06:00	33	0	33	51.3\%	18	12	30	46.9\%	0	1	2	3.1\%	51	14	64
06:30	21	0	21	39.3\%	14	14	28	51.8\%	0	5	5	9.3\%	35	19	54
07:00	17	30	48	54.0\%	14	18	33	37.1\%	0	8	8	9.1\%	32	56	88
07:30	13	38	51	56.5\%	13	12	25	27.5\%	0	14	15	16.6\%	26	64	90
08:00	5	23	28	40.6\%	12	12	24	34.6\%	0	17	18	26.0\%	17	52	69
08:30	5	19	24	38.4\%	17	9	27	42.4\%	0	12	13	20.6\%	22	41	63
09:00	5	9	14	23.9\%	15	22	36	63.9\%	0	7	7	12.3\%	20	37	57
09:30	5	5	10	18.7\%	15	25	40	73.2\%	0	4	5	9.2\%	20	34	54
10:00	5	0	5	13.1\%	16	17	32	80.5\%	0	2	3	7.5\%	21	20	40
10:30	5	7	11	28.6\%	13	13	26	64.5\%	2	1	3	7.5\%	19	21	40
11:00	31	6	37	56.1\%	15	12	26	40.3\%	1	1	3	4.6\%	46	19	65
11:30	39	2	40	60.5\%	14	9	24	35.5\%	2	1	3	4.5\%	55	12	67
12:00	8	3	11	27.3\%	13	12	25	64.0\%	3	1	4	10.3\%	24	15	39
12:30	0	3	3	9.5\%	11	11	22	79.4\%	3	1	4	14.4\%	13	14	28
13:00	0	3	3	9.4\%	14	12	26	80.2\%	3	1	4	12.1\%	17	16	33
13:30	5	5	10	22.7\%	13	15	28	65.8\%	5	0	5	11.7\%	22	20	43
14:00	5	8	13	24.6\%	13	24	37	68.6\%	4	0	4	7.4\%	21	32	54
14:30	0	10	10	21.2\%	12	20	31	68.6\%	5	0	5	10.9\%	16	29	46
15:00	0	10	10	19.1\%	11	25	36	70.7\%	5	0	6	11.8\%	16	35	51
15:30	0	10	10	21.4\%	7	23	30	67.3\%	5	0	6	13.3\%	12	33	45
16:00	0	11	11	25.1\%	9	18	27	59.8\%	7	0	7	15.4\%	16	30	46
16:30	30	44	74	67.2\%	9	19	28	25.6\%	8	0	8	7.3\%	47	63	110
17:00	38	51	89	70.9\%	13	16	29	23.1\%	7	0	8	6.4\%	58	67	125
17:30	13	17	30	47.0\%	17	13	29	45.9\%	4	0	5	7.9\%	34	30	64
18:00	5	9	14	31.4\%	13	13	26	58.8\%	4	0	5	11.1\%	23	22	45
18:30	0	8	8	21.0\%	12	14	27	71.1\%	3	0	3	8.0\%	15	22	38
19:00	0	6	6	19.6\%	12	12	24	76.2\%	1	0	2	6.4\%	14	18	31
19:30	0	6	6	18.8\%	13	12	25	77.4\%	1	0	2	6.1\%	14	19	33
20:00	0	1	1	5.0\%	12	12	24	90.1\%	1	0	2	7.5\%	13	14	27
20:30	0	6	6	22.3\%	9	10	19	74.9\%	1	0	1	3.9\%	10	16	26
21:00	0	5	5	19.5\%	10	11	21	78.5\%	1	0	1	3.7\%	11	16	27
21:30	32	0	32	59.4\%	11	11	22	40.5\%	0	0	1	1.8\%	43	11	54
22:00	40	30	70	75.2\%	12	11	23	24.7\%	0	0	1	1.1\%	53	41	94
22:30	13	38	51	70.8\%	11	10	21	29.2\%	0	0	0	0.0\%	25	48	72
23:00	35	8	43	66.4\%	13	8	22	33.4\%	0	0	1	1.5\%	49	16	65
23:30	38	6	44	74.0\%	13	2	15	25.7\%	0	0	1	1.7\%	51	8	59
	537	537	1,074	40.4\%	715	715	1,430	53.8\%	76	76	173	6.5\%	1,328	1,328	2,656

APPENDIX D

Intersection Analysis Worksheets

Major/Minor M	Major1		Major2		Minor2	
Conflicting Flow All	70	0	-	0	450	70
Stage 1	-	-	-	-	70	-
Stage 2	-	-	-	-	380	-
Critical Hdwy	4.23	-	-	-	6.53	6.33
Critical Hdwy Stg 1	-	-	-	-	5.53	-
Critical Hdwy Stg 2	-	-	-	-	5.53	-
Follow-up Hdwy	2.317	-	-	-	3.617	3.417
Pot Cap-1 Maneuver	1464	-	-	-	547	963
Stage 1	-	-	-	-	926	-
Stage 2	-	-	-	-	668	-
Platoon blocked, \%		-	-	-		
Mov Cap-1 Maneuver	1464	-	-	-	505	963
Mov Cap-2 Maneuver	-	-	-	-	505	-
Stage 1	-	-	-	-	855	-
Stage 2	-	-	-	-	668	-
Approach	EB		WB		SB	
HCM Control Delay, s	2.8		0		8.9	
HCM LOS					A	
Minor Lane/Major Mvmt		EBL	EBT	WBT WBR SBLn1		
Capacity (veh/h)		1464	-	-	-	963
HCM Lane V/C Ratio		0.069	-	-	-	0.05
HCM Control Delay (s)		7.6	0	-	-	8.9
HCM Lane LOS		A	A	-	-	A
HCM 95th \%tile Q(veh)		0.2	-	-	-	0.2

	Intersection					
Int Delay, s/veh 2	2.9					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		\uparrow	个		*	
Traffic Vol, veh/h	41	138	160	2	3	88
Future Vol, veh/h	41	138	160	2	3	88
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control F	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage, \#	\# -	0	0	-	0	-
Grade, \%	-	0	0	-	0	-
Peak Hour Factor	91	91	91	91	89	89
Heavy Vehicles, \%	9	9	9	9	9	9
Mvmt Flow	45	152	176	2	3	99

Major/Minor M	Major1		Major2		Minor2	
Conflicting Flow All	178	0	-	0	419	177
Stage 1	-	-	-	-	177	-
Stage 2	-	-	-	-	242	-
Critical Hdwy	4.19	-	-	-	6.49	6.29
Critical Hdwy Stg 1	-	-	-	-	5.49	-
Critical Hdwy Stg 2	-	-	-	-	5.49	-
Follow-up Hdwy	2.281	-	-	-	3.581	3.381
Pot Cap-1 Maneuver	1357	-	-	-	578	848
Stage 1	-	-	-	-	837	-
Stage 2	-	-	-	-	782	-
Platoon blocked, \%		-	-	-		
Mov Cap-1 Maneuver	1357	-	-	-	557	848
Mov Cap-2 Maneuver	-	-	-	-	557	-
Stage 1	-	-	-	-	807	-
Stage 2	-	-	-	-	782	-
Approach	EB		WB		SB	
HCM Control Delay, s	1.8		0		9.9	
HCM LOS					A	
Minor Lane/Major Mvmt		EBL	EBT	WBT WBR SBLn1		
Capacity (veh/h)		1357	-	-	-	834
HCM Lane V/C Ratio		0.033	-	-	-	0.123
HCM Control Delay (s)		7.7	0	-	-	9.9
HCM Lane LOS		A	A	-	-	A
HCM 95th \%tile Q(veh)		0.1	-	-	-	0.4

Major/Minor M	Major1		Major2		Minor2		
Conflicting Flow All	131	0	-	0	706	119	
Stage 1	-	-	-	-	119	-	
Stage 2	-	-	-	-	587	-	
Critical Hdwy	4.23	-	-	-	6.53	6.33	
Critical Hdwy Stg 1	-	-	-	-	5.53	-	
Critical Hdwy Stg 2	-	-	-	-	5.53	-	
Follow-up Hdwy	2.317	-	-	-	3.617	3.417	
Pot Cap-1 Maneuver	1389	-	-	-	386	904	
Stage 1	-	-	-	-	880	-	
Stage 2	-	-	-	-	535	-	
Platoon blocked, \%		-	-	-			
Mov Cap-1 Maneuver	1389	-	-	-	334	904	
Mov Cap-2 Maneuver	-	-	-	-	334	-	
Stage 1	-	-	-	-	762	-	
Stage 2	-	-	-	-	535	-	
Approach	EB		WB		SB		
HCM Control Delay, s	3.7		0		12		
HCM LOS					B		
Minor Lane/Major Mvmt		EBL	EBT	WBT WBR SBLn1 SBLn2			
Capacity (veh/h)		1389	-	-	-	334	904
HCM Lane V/C Ratio		0.134	-	-	-	0.115	0.383
HCM Control Delay (s)		8	-	-	-	17.2	11.4
HCM Lane LOS		A	-	-	-	C	B
HCM 95th \%tile Q(veh)		0.5	-	-	-	0.4	1.8

Major/Minor M	Major1		Major2		Minor2		
Conflicting Flow All	138	0	-	0	789	126	
Stage 1	-		-	-	126	-	
Stage 2	-	-	-	-	663	-	
Critical Hdwy	4.23	-	-	-	6.53	6.33	
Critical Hdwy Stg 1	-	-	-	-	5.53	-	
Critical Hdwy Stg 2	-	-	-	-	5.53	-	
Follow-up Hdwy	2.317	-	-	-	3.617	3.417	
Pot Cap-1 Maneuver	1381	-	-	-	345	896	
Stage 1	-	-	-	-	873	-	
Stage 2	-	-	-	-	492	-	
Platoon blocked, \%		-	-	-			
Mov Cap-1 Maneuver	1381	-	-	-	290	896	
Mov Cap-2 Maneuver	-	-	-	-	290	-	
Stage 1	-	-	-	-	733	-	
Stage 2	-	-	-	-	492	-	
Approach	EB		WB		SB		
HCM Control Delay, s	4.1		0		13.4		
HCM LOS					B		
Minor Lane/Major Mvmt		EBL	EBT	WBT WBR SBLn1 SBLn2			
Capacity (veh/h)		1381	-	-	-	290	896
HCM Lane V/C Ratio		0.16	-	-	-	0.166	0.483
HCM Control Delay (s)		8.1	-	-	-	19.9	12.7
HCM Lane LOS		A	-	-	-	C	B
HCM 95th \%tile Q(veh)		0.6	-	-	-	0.6	2.7

Intersection						
Int Delay, s/veh	5.9					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	${ }^{7}$	4	\uparrow		\cdots	「
Traffic Vol, veh/h	230	165	175	25	25	210
Future Vol, veh/h	230	165	175	25	25	210
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	150	-	-	-	0	0
Veh in Median Storage, \#	\#	0	0	-	0	-
Grade, \%	-	0	0	-	0	-
Peak Hour Factor	91	91	91	91	89	89
Heavy Vehicles, \%	10	10	10	10	10	10
Mvmt Flow	253	181	192	27	28	236

Major/Minor	Major1	Major2		Minor2		
Conflicting Flow All	1837	0	-	0	2932	91

Stage 1	-	-	-	-1820	-
Stage 2	-	-	-	-1112	-
Critical Hdwy	5.56	-	-	-5.96	7.36

Critical Hdwy Stg 1 - \quad - $\quad-6.86$ -

Critical Hdwy Stg 2	-	-	-	-	6.26
Follow-up Hdwy	3.23	-	-	-	3.93

Pot Cap-1 Maneuver 593 - - - *~24 *542
Stage 1 - - - - *491

\quad Stage 2	-	-	-	$-* 672$	-
Platoon blocked, $\%$	1	-	-	-	1
Mov Cap-1 Maneuver	593	-	-	$-* \sim 11$	$* 542$

Mov Cap-2 Maneuver - - - - *206
Stage 1 - - - *235
Stage 2 - - - - *672

Approach	EB	WB	SB
HCM Control Delay, S	3.5	0	21.2
HCM LOS			C

Minor Lane/Major Mvmt	EBL	EBT	WBT	WBR SBLn1 SBLn2	
Capacity (veh/h)	593	-	-	-206	542
HCM Lane V/C Ratio	0.521	-	-	-0.169	0.589
HCM Control Delay (s)	17.5	-	-	-	26
20.7					
HCM Lane LOS	C	-	-	-	D
HCM 95th \%tile Q(veh)	3	-	-	-	0.6
C	3.8				

Notes

\sim : Volume exceeds capacity $\$$: Delay exceeds $300 \mathrm{~s} \quad+$: Computation Not Defined *: All major volume in platoon

HCM LOS C

Intersection						
Int Delay, s/veh 4.6						
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	\%	444	虾		\cdots	「
Traffic Vol, veh/h	305	1105	1555	30	30	275
Future Vol, veh/h	305	1105	1555	30	30	275
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control Fr	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	150	-	-	-	0	0
Veh in Median Storage, \#	\#	0	0	-	1	-
Grade, \%	-	0	0	-	0	-
Peak Hour Factor	89	89	86	86	72	72
Heavy Vehicles, \%	13	13	13	13	13	13
Mvmt Flow	343	1242	1808	35	42	382

Approach	EB	WB	SB
HCM Control Delay, s	4.1	0	26.7
HCM LOS			D

HCM LOS D

Intersection						
Int Delay, s/veh	1					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	a	个	F		Mr	
Traffic Vol, veh/h	20	365	325	10	15	20
Future Vol, veh/h	20	365	325	10	15	20
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	150	-	-	-	0	-
Veh in Median Storage, \#	-	0	0	-	0	-
Grade, \%	-	0	0	-	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	100	13	13	100	100	100
Mvmt Flow	22	397	353	11	16	22

Major/Minor M	Major1		Major2		Minor2	
Conflicting Flow All	364	0	-	0	800	359
Stage 1	-	-	-	-	359	-
Stage 2	-	-	-	-	441	-
Critical Hdwy	5.1	-	-	-	7.4	7.2
Critical Hdwy Stg 1		-	-	-	6.4	-
Critical Hdwy Stg 2	-	-	-	-	6.4	-
Follow-up Hdwy	3.1	-	-	-	4.4	4.2
Pot Cap-1 Maneuver	808	-	-	-	248	512
Stage 1	-	-	-	-	534	-
Stage 2	-	-	-	-	483	-
Platoon blocked, \%		-	-	-		
Mov Cap-1 Maneuver	808	-	-	-	241	512
Mov Cap-2 Maneuver	-	-	-	-	241	-
Stage 1	-	-	-	-	520	-
Stage 2	-	-	-	-	483	-
Approach	EB		WB		SB	
HCM Control Delay, s	0.5		0		16.7	
HCM LOS					C	
Minor Lane/Major Mvmt		EBL	EBT	T	WBR S	BLn1
Capacity (veh/h)		808	-	-	-	345
HCM Lane V/C Ratio		0.027	-	-	-	0.11
HCM Control Delay (s)		9.6	-	-	-	16.7
HCM Lane LOS		A	-	-	-	C
HCM 95th \%tile Q(veh)		0.1	-	-	-	0.4

Approach	EB	WB	SB
HCM Control Delay, s	0.2	0	16.6

HCM LOS C

Approach	EB	WB	SB
HCM Control Delay, s	0.1	0	18.3
HCM LOS			C

Intersection						

Major/Minor	Major1	Major2		Minor2	
Conflicting Flow All	-	0	0	-338	

Conflicting Flow All	-	0	-	0	-	338
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Critical Hdwy	-	-	-	-	-	6.22

Critical Hdwy Stg 1
Critical Hdwy Stg 2
Follow-up Hdwy - - - - 3.318
Pot Cap-1 Maneuver 0 - - 0704

Stage 1	0	-	-
0			

Stage 20 - $0 \quad 0 \quad$ -
Platoon blocked, \% - - - 704
Mov Cap-1 Maneuver - - - - 704
Mov Cap-2 Maneuver

	EB	WB	SB
Approach	0	10.3	
HCM Control Delay, s	0	0	B

Minor Lane/Major Mvmt	EBT	WBT	WBR SBLn1
Capacity (veh/h)	-	-	-704
HCM Lane V/C Ratio	-	-	-0.039
HCM Control Delay (s)	-	-	-10.3
HCM Lane LOS	-	-	-
HCM 95th \%tile Q(veh)	-	-	-0.1

Intersection						

Major/Minor	Major1	Major2		Minor2		
Conflicting Flow All		0		0		415
Stage 1	-	-		-		
Stage 2	-	-		-		
Critical Hdwy	-	-	-	-	-	6.22
Critical Hdwy Stg 1	-	-	-	-	-	
Critical Hdwy Stg 2	-	-		-		
Follow-up Hdwy		-		-		3.318
Pot Cap-1 Maneuver	0	-	-	-	0	637
Stage 1	0	-	-	-	0	-
Stage 2	0	-	-	-	0	
Platoon blocked, \%		-	-	-		
Mov Cap-1 Maneuver	-	-	-	-	-	637
Mov Cap-2 Maneuver		-	-	-	-	
Stage 1		-	-	-	-	
Stage 2	-	-	-	-	-	

	EB	WB	SB
Approach	0	11	
HCM Control Delay, s	0	0	B

Minor Lane/Major Mvmt	EBT	WBT	WBR SBLn1
Capacity (veh/h)	-	-	-637
HCM Lane V/C Ratio	-	-	-0.06
HCM Control Delay (s)	-	-	-
HCM Lane LOS	-	-	-
HCM 95th \%tile Q(veh)	-	-	-

Major/Minor	Major1	Major2		Minor2		
Conflicting Flow All	-	0	-	0	-	993
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Critical Hdwy	-	-	-	-	-	7.14
Critical Hdwy Stg 1	-	-	-	-	-	-
Critical Hdwy Stg 2	-	-	-	-	-	-
Follow-up Hdwy	-	-	-	-	-	3.92
Pot Cap-1 Maneuver	0	-	-	-	0	$* 497$
Stage 1	0	-	-	-	0	-
Stage 2	0	-	-	-	0	-
Platoon blocked, \%		-	-	-	1	

Mov Cap-1 Maneuver - - - - . *497

Mov Cap-2 Maneuver
Stage 1
Stage 2

Approach	EB	WB	SB
HCM Control Delay, s	0	0	12.7

HCM LOS B

Minor Lane/Major Mvmt	EBT WBT	WBR SBLn1		
Capacity (veh/h)	- -	- 497		
HCM Lane V/C Ratio	- -	- 0.055		
HCM Control Delay (s)	- -	12.7		
HCM Lane LOS	- -	B		
HCM 95th \%tile Q(veh)	- -	0.2		
Notes				
\sim : Volume exceeds capacity	\$: Delay exceeds 300s		+: Computation Not Defined	*: All major volume in platoon

Intersection						
Int Delay，s／veh						
Movement E		EL EBT	WBT	WBR	SBL SBR	
Lane Configurations	蚛虾					「
Traffic Vol，veh／h	0	1815	1920	3	0	35
Future Vol，veh／h	0	1815	1920	3	0	35
Conflicting Peds，\＃／hr	0	0	0	0	0	0
Sign Control F	Free	Free	Free	Free	Stop	Stop
RT Channelized	－	None	－	None	－	None
Storage Length	－	－	－	－	－	0
Veh in Median Storage，\＃	\＃－	0	0	－	0	－
Grade，\％	－	0	0	－	0	－
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles，\％	2	10	10	2	2	2
Mvmt Flow	0	1973	2087	3	0	38

Major／Minor	Major1	Major2		Minor2		
Conflicting Flow All	-	0	-	0	-1045	
\quad Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Critical Hdwy	-	-	-	-	-	7.14
Critical Hdwy Stg 1	-	-	-	-	-	-
Critical Hdwy Stg 2	-	-	-	-	-	-
Follow－up Hdwy	-	-	-	-	-	3.92
Pot Cap－1 Maneuver	0	-	-	-	0	$* 467$
Stage 1	0	-	-	-	0	-
Stage 2	0	-	-	-	0	-
Platoon blocked，\％		-	-	-		1

Mov Cap－1 Maneuver－－－－－＊467

Mov Cap－2 Maneuver
Stage 1
Stage 2

	EB	WB	SB
Approach	0	13.4	
HCM Control Delay， s	0	0	B

Minor Lane／Major Mvmt	EBT WBT	WBR SBLn1		
Capacity（veh／h）	－－	－ 467		
HCM Lane V／C Ratio	－－	－ 0.081		
HCM Control Delay（s）	－－	13.4		
HCM Lane LOS	－－	B		
HCM 95th \％tile Q（veh）	－－	0.3		
Notes				
\sim ：Volume exceeds capacity	\＄：Delay exceeds 300s		＋：Computation Not Defined	＊：All major volume in platoon

Intersection						
Int Delay, s/veh	2					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	M			4	F	
Traffic Vol, veh/h	30	35	45	210	200	20
Future Vol, veh/h	30	35	45	210	200	20
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	150	-	-	-
Veh in Median Storage, $\#$	1	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	10	10	2
Mvmt Flow	33	38	49	228	217	22

Major/Minor M	Minor2		Major1		Major2	
Conflicting Flow All	554	228	239	0	-	0
Stage 1	228	-	-	-	-	-
Stage 2	326	-	-	-	-	-
Critical Hdwy	6.42	6.22	4.12	-	-	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	2.218	-	-	-
Pot Cap-1 Maneuver	493	811	1328	-	-	-
Stage 1	810	-	-	-	-	-
Stage 2	731	-	-	-	-	-
Platoon blocked, \%				-	-	-
Mov Cap-1 Maneuver	475	811	1328	-	-	-
Mov Cap-2 Maneuver	561	-	-	-	-	-
Stage 1	780	-	-	-	-	-
Stage 2	731	-	-	-	-	-
Approach	EB		NB		SB	
HCM Control Delay, s	11		1.4		0	
HCM LOS	B					
Minor Lane/Major Mvmt		NBL	NBT EBLn1		SBT	SBR
Capacity (veh/h)		1328		673	-	-
HCM Lane V/C Ratio		0.037	-	0.105	-	-
HCM Control Delay (s)		7.8	-	11	-	-
HCM Lane LOS		A	-	B	-	-
HCM 95th \%tile Q(veh)		0.1	-	0.3	-	-

Intersection						
Int Delay, s/veh	1					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	Mr			个	F	
Traffic Vol, veh/h	20	25	20	315	280	10
Future Vol, veh/h	20	25	20	315	280	10
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	150	-	-	-
Veh in Median Storage, $\#$	1	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	13	13	2
Mvmt Flow	22	27	22	342	304	11

Intersection						

Intersection						

Intersection						

APPENDIX E

Queuing Analysis Worksheets

QUEUE STORAGE WORKSHEET

ITE Transportation and Land Development, Chapter 8 - Drive-In Facilities

Location Distribution Facility (Truck Access)
Condition Peak Hour of Generator
Storage $=(((\ln P(x>M)-\ln Q m) / \ln p)-1) x$ Average Length of Vehicle
$M=$ queue length which is exceeded p percent of the time
$\mathrm{N}=$ number of service channels (drive in positions)
$Q=$ service rate per channel (vehicles per hour)
$p=$ demand rate/service rate $=q / N Q=$ utilization factor
$\mathrm{q}=$ demand rate on the system (vehicles per hour)
$\mathrm{Qm}=$ tabled values of the relationship between queue length, number of channels and utilization factor (if $n=1, Q m=p$)

Where:
$\mathrm{Q}=\quad 60$ vehicles/hour assuming a 60 second wait
$\mathrm{P}(\mathrm{x}>\mathrm{M})=5$ percent $=.05$
$67 \mathrm{ft} / \mathrm{veh}=$ Average Length of Vehicle
$\mathrm{q}=\frac{51}{}$ vehicles per hour
$\mathrm{N}=$ Number of Lanes=
2

$$
\mathrm{p}=\mathrm{q} / \mathrm{NQ} \quad=\quad 0.43 \quad \mathrm{Qm}=0.78
$$

$M=$ Storage $=\{[(\ln .05-\quad \ln 0.78 \quad) / \ln 0.43 \quad]-1\} * 67$
$M=$ Storage $=\{[(\underline{-2.996}-0.24846) /[-0.856]-1\} \times 67$
$\mathrm{M}=$ Storage $=\quad 148 \mathrm{ft}$

Where:

SL = Desirable Storage Per Lane= 148 Ft

Available Storage =

QUEUE STORAGE WORKSHEET

ITE Transportation and Land Development, Chapter 8 - Drive-In Facilities

Location Distribution Facility (Van Access)
Condition Peak Hour of Generator
Storage $=(((\ln P(x>M)-\ln Q m) / \ln p)-1) x$ Average Length of Vehicle
$M=$ queue length which is exceeded p percent of the time
$\mathrm{N}=$ number of service channels (drive in positions)
$Q=$ service rate per channel (vehicles per hour)
$p=$ demand rate/service rate $=q / N Q=$ utilization factor
$\mathrm{q}=$ demand rate on the system (vehicles per hour)
$\mathrm{Qm}=$ tabled values of the relationship between queue length, number of channels and utilization factor (if $n=1, Q m=p$)

Where:
$\mathrm{Q}=120$ vehicles/hour assuming a 30 second wait
$\mathrm{P}(\mathrm{x}>\mathrm{M})=5$ percent $=.05$
$30 \mathrm{ft} / \mathrm{veh}=$ Average Length of Vehicle
$\mathrm{q}=\frac{15}{\mathrm{~N}=\text { Number }}$ vehicles per hour
$\mathrm{N}=$ Number of Lanes=
1

$$
p=q / N Q \quad=\quad 0.13 \quad Q m=
$$

$M=$ Storage $=\{[(\ln .05-\quad \ln 0.13 \quad) / \ln 0.13 \quad]-1\} * 30$
$\mathrm{M}=$ Storage $=\left\{\left[(\underline{-2.996}-\underline{-2.04022}) /\left[\begin{array}{l}-2.079\end{array}\right]-1\right\} \times 30\right.$
$\mathrm{M}=$ Storage $=\quad 14 \mathrm{ft}$

Where:

SL = Desirable Storage Per Lane= 14 Ft

Available Storage =
$60 \quad \mathrm{Ft}=$ Adequate Storage

APPENDIX F

Conceptual Site Plan

[^0]: Definitions provided from the Highway Capacity Manual, Sixth Edition, Transportation Research Board, 2016.

[^1]: ${ }^{1}$ Transportation Research Board, Highway Capacity Manual, Sixth Edition, Washington DC, 2016.

