Traffic Impact Study

Aurora RV Storage Aurora, Colorado

Prepared for:
MacRitchie, Inc.

Kimley»"Horn

$$
\text { T R A F F I C } \mathbf{T} \text { I M P A C T }
$$

Aurora RV Storage

Aurora, Colorado

Prepared for MacRitchie, Inc.
$7155^{\text {th }}$ Ave SW
Suite 1700
Calgary, AB T2P 2X6
Canada

Prepared by
Kimley-Horn and Associates, Inc.
4582 South Ulster Street
Suite 1500
Denver, Colorado 80237
(303) 228-2300

August 2020

This document, together with the concepts and designs presented herein, as an instrument of service, is intended only for the specific purpose and client for which it was prepared. Reuse of and improper reliance on this document without written authorization and adaptation by KimleyHorn and Associates, Inc. shall be without liability to Kimley-Horn and Associates, Inc.

TABLE OF CONTENTS

TABLE OF CONTENTS i
APPENDICES i
LIST OF TABLES ii
LIST OF FIGURES ii
1.0 EXECUTIVE SUMMARY 1
2.0 INTRODUCTION 3
3.0 EXISTING AND FUTURE CONDITIONS 5
3.1 Existing Study Area 5
3.2 Existing Roadway Network 5
3.3 Existing Traffic Volumes 5
3.4 Unspecified Development Traffic Growth 9
4.0 PROJECT TRAFFIC CHARACTERISTICS 13
4.1 Trip Generation. 13
4.2 Trip Distribution 13
4.3 Traffic Assignment 15
4.4 Total (Background Plus Project) Traffic. 15
5.0 TRAFFIC OPERATIONS ANALYSIS 19
5.1 Analysis Methodology 19
5.2 Key Intersection Operational Analysis 20
5.3 Turn Bay Vehicle Queuing Analysis 22
5.4 Auxiliary Turn Lane Requirement Analysis 22
6.0 CONCLUSIONS AND RECOMMENDATIONS 25

APPENDICES

Appendix A - Intersection Count Sheets
Appendix B - Trip Generation Worksheet
Appendix C - Intersection Analysis Worksheets
Appendix D - Traffic Signal Warrant Figure
Appendix E - Conceptual Site Plan

LIST OF TABLES

Table 1 - Aurora RV Storage Project Traffic Generation 13
Table 2 - Level of Service Definitions 19
Table 3 - Jewell Avenue and Rome Way LOS Results 21
Table 4 - Turn Lane Length Analysis Results 22
LIST OF FIGURES
Figure 1 - Vicinity Map. 4
Figure 2 - Surrounding Site Area 6
Figure 3 - Existing Lane Configurations and Control 7
Figure 4-2019 Existing Traffic Volumes 8
Figure 5-2020 Adjusted Existing Traffic Volumes 10
Figure 6 - 2022 Background Traffic Volumes 11
Figure 7 - 2040 Background Traffic Volumes. 12
Figure 8 - Project Trip Distribution 14
Figure 9 - Project Traffic Assignment 16
Figure 10 - 2022 Background Plus Project Traffic Volumes 17
Figure 11 - 2040 Background Plus Project Traffic Volumes 18
Figure 12 - 2040 Recommended Lane Configurations and Control 24

1.0 EXECUTIVE SUMMARY

Aurora RV Storage is proposed to be located along the east side of Rome Way, south of Jewell Avenue in Aurora, Colorado. The site is anticipated to include approximately 850 parking units for vehicle storage. It is expected that the project will be completed within the next couple of years; therefore, analysis was conducted for the 2022 short term and 2040 long-term horizons per City of Aurora requirements.

The purpose of this traffic study is to identify project traffic generation characteristics and potential project traffic related impacts on the local street system, as well as to develop mitigation measures required for identified impacts. The intersection of Jewell Avenue and Rome Way was incorporated into this traffic study in accordance with the City of Aurora standards and requirements.

Regional access will be provided by Jewell Avenue and E-470. Primary access to the site will be provided by Rome Way. The Aurora RV Storage development proposes to gain access from the southern terminal point of Rome Way, south of Jewell Avenue.

The Aurora RV Storage site is expected to generate approximately 154 weekday daily trips with 12 of these trips occurring during the morning peak hour and 16 trips occurring during the afternoon peak hour.

Distribution of site traffic on the street system was based on the area street system characteristics, existing traffic patterns, anticipated surrounding development in the area, and the proposed access system for the project. Assignment of project traffic was based upon the trip generation described previously and the distributions developed.

Based on the analysis presented in this report, Kimley-Horn believes the proposed Aurora RV Storage development will be successfully incorporated into the existing roadway network. No offsite roadway improvements are anticipated to be needed at the studied key intersection of Jewell Avenue and Rome Way to accommodate project traffic in the 2022 near term buildout horizon. A cul-de-sac is proposed to be constructed at the southern terminus of Rome Way at the project site. If future traffic volumes materialize by 2040, a westbound left turn lane with a
length of 275 feet with a 160-foot taper may be needed at the intersection. The City of Aurora's 2018 Aurora Northeast Area Transportation Study Refresh (NEATS Refresh) identifies Jewell Avenue as a six-lane roadway by 2030, with which it is anticipated left turn lanes will be provided at key intersections. As such, the intersection of Jewell Avenue and Rome Way was also evaluated with three through lanes in each direction along Jewell Avenue and a westbound left turn lane in the 2040 horizon. Any on-site and off-site signing and striping improvements should be incorporated into the Civil Drawings and conform to City of Aurora Standards as well as the Manual on Uniform Traffic Control Devices - 2009 Edition (MUTCD).

2.0 INTRODUCTION

Kimley-Horn and Associates, Inc. has prepared this report to document the results of a Traffic Impact Study of future traffic conditions associated with the proposed Aurora RV Storage to be located along the east side of Rome Way, south of Jewell Avenue in Aurora, Colorado. A vicinity map illustrating the project location is shown in Figure 1. The site is anticipated to include approximately 850 storage units for vehicle storage. A conceptual site plan illustrating the development is shown in Appendix \mathbf{E}. It is expected that the project will be completed within the next couple of years; therefore, analysis was conducted for the 2022 short term and 2040 longterm horizons per City of Aurora requirements.

The purpose of this traffic study is to identify project traffic generation characteristics and potential project traffic related impacts on the local street system, as well as to develop mitigation measures required for identified impacts. The intersection of Jewell Avenue and Rome Way was incorporated into this traffic study in accordance with the City of Aurora standards and requirements.

Regional access will be provided by Jewell Avenue and E-470. Primary access to the site will be provided by Rome Way. The Aurora RV Storage development proposes to gain access from the southern terminal point of Rome Way, south of Jewell Avenue.

3.0 EXISTING AND FUTURE CONDITIONS

3.1 Existing Study Area

The existing site is comprised of vacant land. To the northwest of the existing site, along the west side of Rome Way, are two other RV and boat storage facilities. The extended area mainly consists of vacant parcels. The land uses and roadway network surrounding the site within the study area are shown within the aerial of Figure 2.

3.2 Existing Roadway Network

Jewell Avenue provides one through lane of travel eastbound and westbound with a posted speed limit of 45 miles per hour through the study area. Rome Way does not provide pavement lane markings but provides a width for one through lane of travel northbound and southbound. The posted speed limit is 30 miles per hour through the study area.

The existing T-intersection of Rome Way and Jewell Avenue operates with stop control along the northbound Rome Way approach. All approaches of this intersection provide a single lane for shared movements. Rome Way extends approximate 3,500 feet south of the intersection of Jewell Avenue to the proposed project site and then terminates. The intersection lane configuration and control for the existing study area key intersections are shown in Figure 3.

3.3 Existing Traffic Volumes

Existing peak hour through volume counts along Jewell Avenue at Rome Way were obtained from a previous traffic signal warrant study performed by Kimley-Horn for the E-470 and Jewell Avenue interchange ramps. These previous counts conducted in 2019 were used due to the COVID-19 pandemic impacting regular traffic volumes when the traffic study was performed. The eastbound and westbound through movements at the intersection of Jewell Avenue and Rome Way were derived from the traffic counts performed at the Jewell Avenue and E-470 Southbound Ramps intersection on Wednesday, April 3, 2019 and Thursday, April 4, 2019. The turning movements at the intersection of Jewell Avenue and Rome Way were derived from the trip generation potential for the existing developments along Rome Way. The collected and derived turning movements counts for 2019 are shown in Figure 4 with count sheets provided in Appendix A.

FIGURE 3

LEGEND

- Study Area Key Intersection

XXX(XXX) Weekday AM(PM)
Peak Hour Traffic Volumes
XX,X00 Estimated Daily Traffic Volume

3.4 Unspecified Development Traffic Growth

A two percent annual growth rate was used to estimate future traffic volume conditions to be consistent with the City of Aurora Traffic Impact Study Guidelines. This annual growth rate of two percent was used to estimated short term 2022 and long term 2040 traffic volumes at the key intersection. Existing 2019 traffic counts were grown to year 2020 and are shown in Figure 5. Background traffic volumes for 2022 and 2040 are shown in Figure 6 and Figure 7, respectively.

LEGEND

- Study Area Key Intersection

XXX(XXX) Weekday AM(PM)
Peak Hour Traffic Volumes
XX,X00 Estimated Daily Traffic Volume

LEGEND

- Study Area Key Intersection

XXX(XXX) Weekday AM(PM)
Peak Hour Traffic Volumes
XX,X00 Estimated Daily Traffic Volume
FIGURE 6

LEGEND

- Study Area Key Intersection

XXX(XXX) Weekday AM(PM)
Peak Hour Traffic Volumes
XX,X00 Estimated Daily Traffic Volume
FIGURE 7

4.0 PROJECT TRAFFIC CHARACTERISTICS

4.1 Trip Generation

Site-generated traffic estimates are determined through a process known as trip generation. Rates and equations are applied to the proposed land uses to estimate traffic generated by the development during a specific time interval. The acknowledged source for trip generation rates is the Trip Generation Manual ${ }^{1}$ published by the Institute of Transportation Engineers (ITE). ITE has established trip rates in nationwide studies of similar land uses. For this study, Kimley-Horn used the ITE Trip Generation average rates that apply to Mini Warehouse (ITE Code 151) for traffic associated with the development, as it is believed that this is most appropriate use code for this use since specific RV Storage data is not available.

The Aurora RV Storage site is expected to generate approximately 154 weekday daily trips with 12 of these trips occurring during the morning peak hour and 16 trips occurring during the afternoon peak hour. Table 1 summarizes the estimated trip generation for the proposed development with the calculation worksheet included in Appendix B.

Table 1 - Aurora RV Storage Project Traffic Generation

	Weekday Vehicle Trips						
	Laily Use and Size	AM Peak Hour			PM Peak Hour		
		Out	Total	In	Out	Total	
Mini Warehouse (ITE 151) 850 Units	154	6	6	12	8	8	16

4.2 Trip Distribution

Distribution of site traffic on the street system was based on the area street system characteristics, existing traffic patterns, existing and anticipated surrounding demographic information, and the proposed access system for the project. The directional distribution of traffic is a means to quantify the percentage of site-generated traffic that approaches the site from a given direction and departs the site back to the original source. The project trip distribution is illustrated in Figure 8.

[^0]

4.3 Traffic Assignment

Traffic assignment was obtained by applying the project trip distribution to the estimated traffic generation of the development shown in Table 1. Site traffic assignment is shown in Figure 9.

4.4 Total (Background Plus Project) Traffic

Site generated traffic volumes were added to the background volumes to represent estimated traffic conditions for the short term 2022 horizon and long term 2040 horizon. These total traffic volumes for the site are illustrated for the 2022 and 2040 horizon years in Figures 10 and 11, respectively.

LEGEND

- Study Area Key Intersection

XXX(XXX) Weekday AM(PM)
Peak Hour Traffic Volumes
XX,X00 Estimated Daily Traffic Volume

LEGEND

- Study Area Key Intersection

XXX(XXX) Weekday AM(PM)
Peak Hour Traffic Volumes
XX,X00 Estimated Daily Traffic Volume
AURORA RV STORAGE

LEGEND

- Study Area Key Intersection

XXX(XXX) Weekday AM(PM)
Peak Hour Traffic Volumes
XX,X00 Estimated Daily Traffic Volume
AURORA RV STORAGE

5.0 TRAFFIC OPERATIONS ANALYSIS

Kimley-Horn's analysis of traffic operations in the site vicinity was conducted to determine potential capacity deficiencies in the 2022 and 2040 development horizons at the identified key intersections and access driveways. The acknowledged source for determining overall capacity is the current edition of the Highway Capacity Manual (HCM) ${ }^{2}$.

5.1 Analysis Methodology

Capacity analysis results are listed in terms of Level of Service (LOS). LOS is a qualitative term describing operating conditions a driver will experience while traveling on a particular street or highway during a specific time interval. It ranges from A (very little delay) to F (long delays and congestion). Typical standard traffic engineering practice recommends intersection LOS D for signalized intersections and LOS E for movements or approaches of unsignalized intersections as the minimum threshold for acceptable operations. Table 2 shows the definition of level of service for signalized and unsignalized intersections.

Table 2 - Level of Service Definitions

Level of Service	Signalized Intersection Average Total Delay (sec/veh)	Unsignalized Intersection Average Total Delay (sec/veh)
A	≤ 10	≤ 10
B	>10 and ≤ 20	>10 and ≤ 15
C	>20 and ≤ 35	>15 and ≤ 25
D	>35 and ≤ 55	>25 and ≤ 35
E	>55 and ≤ 80	>35 and ≤ 50
F	>80	>50

Definitions provided from the Highway Capacity Manual, Sixth Edition, Transportation Research Board, 2016.

Study area intersections were analyzed based on average total delay analysis for signalized and unsignalized intersections. Under the unsignalized analysis, the LOS for a two-way stopcontrolled intersection is determined by the computed or measured control delay and is defined for each minor movement. LOS for a two-way stop-controlled intersection is not defined for the intersection as a whole. LOS for a signalized and all-way stop controlled intersection is defined for each approach and for the overall intersection.

[^1]
5.2 Key Intersection Operational Analysis

Calculations for the level of service at the key intersections for the study area are provided in Appendix C. The existing year analysis is based on the lane geometry and intersection control shown in Figure 3. Synchro 10 traffic analysis software was used to analyze the study area intersections. The Synchro Highway Capacity Manual (HCM) methodology reports were used to analyze intersection delay and level of service. The heavy vehicle percent was determined to be 5% for the eastbound and westbound through movements and 15% for the eastbound right, westbound left, and northbound movements due to the surrounding land uses. The heavy vehicle percentage for the movements onto and out of Rome Way during the peak hours are anticipated to have fewer heavy vehicles.

Jewell Avenue and Rome Way

The T-intersection of Jewell Avenue and Rome Way currently operates with stop control along the northbound Rome Way approach. With this control and the existing lane configurations, all movements are expected to operate at LOS E or better during the morning and afternoon peak hours in 2022.

By 2040, if future traffic volumes materialize, an exclusive westbound left turn lane may be needed in order for this intersection to operate acceptably during the peak hours. In addition, an acceleration lane has the potential to benefit this intersection for northbound left turn vehicles to be able to turn into and merge into westbound through traffic. This westbound receiving lane would create a High T or Continuous Green T intersection configuration to allow two-stage left turn movements. Based on CDOT State Highway Access Code, Jewell Avenue is classified as a Non-Rural Arterial (NR-B); therefore, the acceleration lane would be constructed with a length of 390 feet plus a 160 -foot taper and the westbound left turn lane would be constructed with a length of 275 feet plus a 160 -foot taper. With these improvements, the intersection movements are expected to operate at LOS E or better during the peak hours in 2040. In addition, the City of Aurora's 2018 Aurora Northeast Area Transportation Study Refresh (NEATS Refresh) identifies Jewell Avenue as a six-lane roadway by 2030. As such, this intersection was also evaluated with three through lanes in each direction in the 2040 horizon. With Jewell Avenue improved to a six-lane facility, all movements at this intersection are expected to operate acceptably with LOS D or better during the peak hours in 2040. Table 3 provides the results of the level of service at this intersection.

Table 3 - Jewell Avenue and Rome Way LOS Results

Scenario	AM Peak Hour		PM Peak Hour	
	Delay (sec/veh)	LOS	Delay (sec/veh)	LOS
2020 Existing Northbound Approach Westbound Left	$\begin{gathered} 31.6 \\ 9.3 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{D} \\ & \mathrm{~A} \end{aligned}$	$\begin{gathered} 35.5 \\ 9.9 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{D} \\ & \mathrm{~A} \end{aligned}$
2022 Background Northbound Approach Westbound Left	$\begin{gathered} 35.4 \\ 9.5 \end{gathered}$	$\begin{aligned} & \mathrm{E} \\ & \mathrm{~A} \end{aligned}$	$\begin{aligned} & 40.2 \\ & 10.1 \end{aligned}$	$\begin{aligned} & \mathrm{E} \\ & \mathrm{~B} \end{aligned}$
2022 Background Plus Project Northbound Approach Westbound Left	$\begin{gathered} 36.6 \\ 9.5 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{E} \\ & \mathrm{~A} \end{aligned}$	$\begin{aligned} & 49.2 \\ & 10.2 \end{aligned}$	$\begin{aligned} & \mathrm{E} \\ & \mathrm{~B} \end{aligned}$
2040 Background Northbound Approach Westbound Left	$\begin{gathered} 148.4 \\ 11.3 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{F} \\ & \mathrm{~B} \\ & \hline \end{aligned}$	$\begin{gathered} 233.4 \\ 12.9 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{F} \\ & \mathrm{~B} \\ & \hline \end{aligned}$
2040 Background \# Northbound Approach Westbound Left	$\begin{aligned} & 32.5 \\ & 11.3 \end{aligned}$	$\begin{aligned} & \mathrm{D} \\ & \mathrm{~B} \\ & \hline \end{aligned}$	$\begin{aligned} & 37.5 \\ & 12.9 \end{aligned}$	$\begin{aligned} & \mathrm{E} \\ & \mathrm{~B} \end{aligned}$
2040 Background Plus Project \# Northbound Approach Westbound Left	$\begin{aligned} & 35.6 \\ & 11.4 \end{aligned}$	$\begin{aligned} & \mathrm{D} \\ & \mathrm{~B} \end{aligned}$	$\begin{aligned} & 41.3 \\ & 13.0 \end{aligned}$	$\begin{aligned} & \mathrm{E} \\ & \mathrm{~B} \end{aligned}$
2040 Background Plus Project \#\# Northbound Approach Westbound Left	$\begin{aligned} & 27.3 \\ & 17.2 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{D} \\ & \mathrm{C} \\ & \hline \end{aligned}$	$\begin{aligned} & 33.8 \\ & 21.5 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{D} \\ & \mathrm{C} \\ & \hline \end{aligned}$

\# = Addition of a westbound left turn lane;
\#\# = Three through lanes in each direction along Jewell Avenue

Also, the City of Aurora requested that a traffic signal warrant evaluation be performed for this Jewell Avenue and Rome Way intersection. The northbound minor street Rome Way approach traffic volume is so low, that it isn't anticipated to meet warrants with the existing developments and this project throughout 2040. The four-hour traffic volume signal warrant figure is shown in Appendix D.

5.3 Turn Bay Vehicle Queuing Analysis

A vehicle queuing analysis was completed for the intersection of Jewell Avenue and Rome Way per City of Aurora standards and requirements. The queuing analysis was performed using the Synchro analysis software presenting the results of the 95th percentile queue length. Queue length calculations for the unsignalized intersection are provided within the level of service operational sheets provided in Appendix C. Results of the vehicle queuing analysis and recommendations are shown in the following Table 4. It was assumed if the $95^{\text {th }}$ percentile queue was less than one vehicle then the queue length was noted as 50 feet to account for the average length of vehicles using the turn lane.

Table 4 - Turn Lane Length Analysis Results

Intersection	Existing Turn Lane Length (feet)	2022 Total Queue Length (feet)	2022 Recommended Turn Lane Length (feet)	2040 Total Queue Length (feet)	2040 Recommended Turn Lane Length (feet)
Turn Lane	C	50^{\prime}			
Jewell Ave \& Rome Way	C	50^{\prime}	C		
Northbound Approach	CNE	DNE	DNE	50^{\prime}	275^{\prime}

C = Continuous lane

As shown in the table representing the queuing results, all anticipated vehicle queues are accommodated or managed within existing or proposed turn lanes at the intersection of Jewell Avenue and Rome Way. If future traffic volumes materialize by 2040, a westbound left turn with 275 feet of length and 160-foot taper should be provided at the intersection of Jewell Avenue and Rome Way.

5.4 Auxiliary Turn Lane Requirement Analysis

The City of Aurora has directed Kimley-Horn to use the Colorado Department of Transportation (CDOT) State Highway Access Code (SHAC) guidelines to determine if designated turn lanes are warranted for the intersection of Jewell Avenue and Rome Way. CDOT classifies their state highways based on roadway types. The Non-Rural Arterial Category NR-C (low to moderate travel speeds and moderate volumes) was assigned to Jewell Avenue based on matching the characteristics of the CDOT roadways. According to the State Highway Access Code for category NR-C roadways, a left turn lane with storage length plus taper is required for any access with a projected peak hour left ingress volume greater than 25 vehicles per hour. Right turn lanes with storage length plus taper are required for any access with a projected peak hour
right ingress turning volume greater than 50 vehicles per hour. If the posted speed limit is greater than 40 miles per hour, a left turn lane is warranted if the left turn ingress volume is greater than 10 vehicles per hour, and a right turn lane deceleration lane and taper is required for any access with a project peak hour right ingress turning volume greater than 25 vehicles per hour. Jewell Avenue currently has a posted speed limit of 45 miles per hour within the project limits. Based on the current speed limits and 2040 traffic volume projections, turn lane requirements at the intersection of Jewell Avenue and Rome Way are as follows:

- A westbound left turn lane is not warranted for at the Jewell Avenue and Rome Way intersection based on projected 2022 background plus project traffic volumes being 10 westbound left turns during the peak hour and the threshold being greater than 10 vehicles per hour.
- An eastbound right turn lane is not warranted for at the Jewell Avenue and Rome Way intersection based on projected 2022 background plus project traffic volumes being 15 eastbound right turns during the peak hour and the threshold being greater than 25 vehicles per hour.

The recommended lane configurations and control of the study key intersection for year 2022 are the same as existing. The year 2040 recommendations are shown in Figure 12.

LEGEND
Study Area Key Intersection
Signalized Intersection
Stop Controlled Approach
Improvement

6.0 CONCLUSIONS AND RECOMMENDATIONS

Based on the analysis presented in this report, Kimley-Horn believes the proposed Aurora RV Storage development will be successfully incorporated into the existing roadway network. No offsite roadway improvements are anticipated to be needed at the studied key intersection of Jewell Avenue and Rome Way to accommodate project traffic in the 2022 near term buildout horizon. A cul-de-sac is proposed to be constructed at the southern terminus of Rome Way at the project site. If future traffic volumes materialize by 2040, a westbound left turn lane with a length of 275 feet with a 160 -foot taper may be needed at the intersection. The City of Aurora's 2018 Aurora Northeast Area Transportation Study Refresh (NEATS Refresh) identifies Jewell Avenue as a six-lane roadway by 2030, with which it is anticipated left turn lanes will be provided at key intersections. As such, the intersection of Jewell Avenue and Rome Way was also evaluated with three through lanes in each direction along Jewell Avenue and a westbound left turn lane in the 2040 horizon. Any on-site and off-site signing and striping improvements should be incorporated into the Civil Drawings and conform to City of Aurora Standards as well as the Manual on Uniform Traffic Control Devices - 2009 Edition (MUTCD).

APPENDICES

APPENDIX A

Intersection Count Sheets

Daily Vehicle Volume Report

Study Date:	Thursday, 04/04/2019 / Friday, 04/05/2019
Unit ID:	RDC 0
Location:	Jewell Ave and E-470
Comments:	Southbound Ramp

	Southbound Rights Volume	Southbound Thru/Left Volume	Total Volume
03:00-03:59	2	9	11
04:00-04:59	7	26	33
05:00-05:59	26	28	54
06:00-06:59	70	48	118
07:00-07:59	131	32	163
08:00-08:59	99	50	149
09:00-09:59	60	49	109
10:00-10:59	50	47	97
11:00-11:59	45	41	86
12:00-12:59	50	68	118
13:00-13:59	50	51	101
14:00-14:59	78	35	113
15:00-15:59	140	47	187
16:00-16:59	226	56	282
17:00-17:59	237	14	251
18:00-18:59	109	30	139
19:00-19:59	62	11	73
20:00-20:59	32	9 9	41
21:00-21:59	20	6	26
22:00-22:59	19	6	25
23:00-23:59	16	8	24
00:00-00:59	16	4	20
01:00-01:59	3	8	11
02:00-02:59	4	\square	10
Totals	1552	689	2241
AM Peak Time	07:18-08:17	09:43-10:42	07:18-08:17
AM Peak Volume	145	60	179
PM Peak Time	16:31-17:30	12:00-12:59	16:13-17:12
PM Peak Volume	273	68	315

Daily Vehicle Volume Report

Study Date:	Thursday, 04/04/2019 / Friday, 04/05/2019
Unit ID:	RDC 8
Location:	Jewell Ave and E-470
Comments:	Eastbound Approaching SB Ramp

	Eastbound Volume
03:00-03:59	19
04:00-04:59	37
05:00-05:59	148
06:00-06:59	420
07:00-07:59	628
08:00-08:59	448
09:00-09:59	315
10:00-10:59	297
11:00-11:59	306
12:00-12:59	297
13:00-13:59	330
14:00-14:59	453
15:00-15:59	549
16:00-16:59	737
17:00-17:59	758
18:00-18:59	564
19:00-19:59	333
20:00-20:59	280
21:00-21:59	205
22:00-22:59	121
23:00-23:59	76
00:00-00:59	28
01:00-01:59	26
02:00-02:59	16
Totals	7391
AM Peak Time	07:00-07:59
AM Peak Volume	628
PM Peak Time	16:42-17:41
PM Peak Volume	806

Daily Vehicle Volume Report

Study Date:	Wednesday, 04/03/2019 / Thursday, 04/04/2019
Unit ID:	RDC 14
Location:	Jewell Ave and E-470
Comments:	Westbound Approaching SB Ramp

	Westbound Volume
03:00-03:59	15
04:00-04:59	70
05:00-05:59	210
06:00-06:59	473
07:00-07:59	812
08:00-08:59	513
09:00-09:59	360
10:00-10:59	245
11:00-11:59	299
12:00-12:59	288
13:00-13:59	300
14:00-14:59	398
15:00-15:59	557
16:00-16:59	682
17:00-17:59	677
18:00-18:59	415
19:00-19:59	254
20:00-20:59	185
21:00-21:59	109
22:00-22:59	81
23:00-23:59	46
00:00-00:59	15
01:00-01:59	13
02:00-02:59	8
Totals	7025
AM Peak Time	06:58-07:57
AM Peak Volume	817
PM Peak Time	16:46-17:45
PM Peak Volume	715

Daily Vehicle Volume Report

Study Date:	Thursday, 04/04/2019 / Friday, 04/05/2019
Unit ID:	RDC 14
Location:	Jewell Ave and E-470
Comments:	Westbound Approaching SB Ramp

	Westbound Volume
03:00-03:59	22
04:00-04:59	68
05:00-05:59	207
06:00-06:59	495
07:00-07:59	786
08:00-08:59	579
09:00-09:59	353
10:00-10:59	266
11:00-11:59	267
12:00-12:59	308
13:00-13:59	299
14:00-14:59	373
15:00-15:59	541
16:00-16:59	688
17:00-17:59	682
18:00-18:59	465
19:00-19:59	308
20:00-20:59	206
21:00-21:59	120
22:00-22:59	91
23:00-23:59	49
00:00-00:59	28
01:00-01:59	18
02:00-02:59	16
Totals	7235
AM Peak Time	07:04-08:03
AM Peak Volume	806
PM Peak Time	16:48-17:47
PM Peak Volume	745

APPENDIX B

Trip Generation Worksheet

Kimley»)Horn

Project Aurora RV Storage - Proposed Traffic
Subject Trip Generation for Mini Warehouse

TRIP GENERATION MANUAL TECHNIQUES

ITE Trip Generation Manual 10th Edition, Average Rate Equations
Land Use Code - Mini-Warehouse (151)
Independant Variable - 100 Storage Units (X)
Storage Units = 850
$\mathrm{X}=8.5$
T = Average Vehicle Trip Ends
Peak Hour of Adjacent Street Traffic, One Hour Between 7 and 9 a.m. (100 Series Page 84)
Directional Distribution: 51\% ent. 49\% exit.
$\begin{array}{ll}\mathrm{T}=1.39(\mathrm{X}) & \\ \mathrm{T}=1.39{ }^{*} & 8.50\end{array}$
T = 12 Average Vehicle Trip Ends
6 entering 6 exiting
$6+6=12$

Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6 p.m. (100 Series Page 85)
Directional Distribution: 50\% ent. 50\% exit.
$\mathrm{T}=1.95$ (X)
$\mathrm{T}=1.95$ *
8.5
$\begin{array}{ccc}\mathrm{T}= & 16 & \text { Average Vehicle Trip Ends } \\ 8 & \text { entering } & 8\end{array}$
$8+8=16$

Weekday (100 Series Page 83)
$\mathrm{T}=17.96(\mathrm{X})$
$\mathrm{T}=17.96$ *
8.5

Directional Distribution: 50\% entering, 50\% exiting T = $154 \quad$ Average Vehicle Trip Ends 77 entering 77 exiting $77+77=154$

APPENDIX C

Intersection Analysis Worksheets

Intersection						
Int Delay, s/veh	0.2					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	\uparrow			\uparrow	Mr	
Traffic Vol, veh/h	641	5	2	796	5	2
Future Vol, veh/h	641	5	2	796	5	2
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage, $\#$	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	5	15	15	5	15	15
Mvmt Flow	697	5	2	865	5	2


```
HCMLOS D
```


Major/Minor \quad N	Major1		Major2		Minor1	
Conflicting Flow All	0	0	847	0	1712	844
Stage 1	-	.	-		844	-
Stage 2	-	-	-		868	
Critical Hdwy	-		4.25	-	6.55	6.35
Critical Hdwy Stg 1	-	-	-		5.55	-
Critical Hdwy Stg 2	-	-	-		5.55	-
Follow-up Hdwy	-		2.335		3.635	3.435
Pot Cap-1 Maneuver	-	-	737	-	92	344
Stage 1	-		-		401	-
Stage 2	-	-	-		390	-
Platoon blocked, \%	-	-		-		
Mov Cap-1 Maneuver	-		737		91	344
Mov Cap-2 Maneuver	-	-	-	-	91	-
Stage 1	-	-	-		401	-
Stage 2	-	-	-		386	-
Approach	EB		WB		NB	
HCM Control Delay, s	0		0		35.5	
HCMLOS		E				
Minor Lane/Major Mvmt		NBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)		129	-	-	737	-
HCM Lane V/C Ratio		0.084	-		0.006	-
HCM Control Delay (s)		35.5	-		9.9	0
HCM Lane LOS		E	-	-	A	A
HCM 95th \%tile Q(veh)		0.3	-		0	

Intersection						
Int Delay, s/veh	0.2					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	6			\uparrow	Mr	
Traffic Vol, veh/h	680	5	2	845	5	2
Future Vol, veh/h	680	5	2	845	5	2
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage, $\#$	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	5	15	15	5	15	15
Mvmt Flow	739	5	2	918	5	2

Major/Minor M	Major1		Major2		Minor1	
Conflicting Flow All	0	0	744	0	1664	742
Stage 1	-	-	-	-	742	-
Stage 2	-	-	-	-	922	-
Critical Hdwy	-	-	4.25	-	6.55	6.35
Critical Hdwy Stg 1	-	-	-	-	5.55	-
Critical Hdwy Stg 2	-	-	-	-	5.55	-
Follow-up Hdwy	-	-	2.335	-	3.635	3.435
Pot Cap-1 Maneuver	-	-	807	-	99	395
Stage 1	-	-	-	-	448	-
Stage 2	-	-	-	-	367	-
Platoon blocked, \%	-	-		-		
Mov Cap-1 Maneuver	-	-	807	-	99	395
Mov Cap-2 Maneuver	-	-	-	-	99	-
Stage 1	-	-	-	-	448	-
Stage 2	-	-	-	-	365	-
Approach	EB		WB		NB	
HCM Control Delay, s	0		0		35.4	
HCM LOS					E	
Minor Lane/Major Mvmt		NBLn1 EBT EBR WBL WBT				
Capacity (veh/h)		126	-	-	807	-
HCM Lane V/C Ratio		0.06	-	-	0.003	-
HCM Control Delay (s)		35.4	-	-	9.5	0
HCM Lane LOS		E	-	-	A	A
HCM 95th \%tile Q(veh)		0.2	-	-	0	-

Intersection						
Int Delay, s/veh	0.2					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	\uparrow			\uparrow	Mr	
Traffic Vol, veh/h	820	6	4	839	6	4
Future Vol, veh/h	820	6	4	839	6	4
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage, $\#$	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	5	15	15	5	15	15
Mvmt Flow	891	7	4	912	7	4

Intersection						
Int Delay, s/veh	0.4					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	\uparrow			\uparrow	Mr	
Traffic Vol, veh/h	680	10	5	845	10	5
Future Vol, veh/h	680	10	5	845	10	5
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage, $\#$	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	5	15	15	5	15	15
Mvmt Flow	739	11	5	918	11	5

Intersection						
Int Delay, s/veh	0.8					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	\uparrow			\uparrow	Mr	
Traffic Vol, veh/h	820	15	10	840	15	10
Future Vol, veh/h	820	15	10	840	15	10
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage, $\#$	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	5	15	15	5	15	15
Mvmt Flow	891	16	11	913	16	11

Major/Minor M	Major1		Major2		Minor1	
Conflicting Flow All	0	0	907	0	1834	899
Stage 1	-	-	-	-	899	-
Stage 2	-	-	-	-	935	-
Critical Hdwy	-	-	4.25	-	6.55	6.35
Critical Hdwy Stg 1	-	-	-	-	5.55	-
Critical Hdwy Stg 2	-	-	-	-	5.55	-
Follow-up Hdwy	-	-	2.335	-	3.635	3.435
Pot Cap-1 Maneuver	-	-	699	-	77	320
Stage 1	-	-	-	-	377	-
Stage 2	-	-	-	-	362	-
Platoon blocked, \%	-	-		-		
Mov Cap-1 Maneuver	-	-	699	-	75	320
Mov Cap-2 Maneuver	-	-	-	-	75	-
Stage 1	-	-	-	-	377	-
Stage 2	-	-	-	-	350	-
Approach	EB		WB		NB	
HCM Control Delay, s	0		0.1		49.2	
HCM LOS					E	
Minor Lane/Major Mvmt		NBLn1	EBT	EBR	R WBL	WBT
Capacity (veh/h)		108	-	-	699	-
HCM Lane V/C Ratio		0.252	-	-	0.016	-
HCM Control Delay (s)		49.2	-	-	10.2	0
HCM Lane LOS		E	-	-	B	A
HCM 95th \%tile Q(veh)		0.9	-	-	0	-


```
HCM LOS
F
```

Minor Lane/Major Mvmt	NBLn1	EBT	EBR	WBL	WBT	
Capacity (veh/h)	36	-	-	573	-	
HCM Lane V/C Ratio	0.332	-	-	0.006	-	
HCM Control Delay (s)	148.4	-	-	11.3	0	
HCM Lane LOS	F	-	-	B	A	
HCM 95th \%tile Q(veh)	1.1	-	-	0		

Intersection						
Int Delay, s/veh	1.4					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	F			-	Mr	
Traffic Vol, veh/h	1243	9	6	1272	9	6
Future Vol, veh/h	1243	9	6	1272	9	6
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage, $\#$	0	-	-	0	0	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	5	15	15	5	15	15
Mvmt Flow	1351	10	7	1383	10	7


```
HCMLOS
F
```


Intersection						
Int Delay, s/veh	0.2					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	F			A	Mr	
Traffic Vol, veh/h	1031	8	3	1281	8	3
Future Vol, veh/h	1031	8	3	1281	8	3
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	0	-	0	-
Veh in Median Storage, $\#$	0	-	-	0	1	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	5	15	15	5	15	15
Mvmt Flow	1121	9	3	1392	9	3


```
HCMLOS D
```

Minor Lane/Major Mvmt	NBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)	143	-	-573	-	
HCM Lane V/C Ratio	0.084	-	-0.006	-	
HCM Control Delay (s)	32.5	-	-11.3	-	
HCM Lane LOS	D	-	-	B	-
HCM 95th \%tile Q(veh)	0.3	-	-	0	-

Intersection						
Int Delay, s/veh	0.3					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	F			4	Mr	
Traffic Vol, veh/h	1243	9	6	1272	9	6
Future Vol, veh/h	1243	9	6	1272	9	6
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	0	-	0	-
Veh in Median Storage, $\#$	0	-	-	0	1	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	5	15	15	5	15	15
Mvmt Flow	1351	10	7	1383	10	7

Major/Minor M	Major1		Major2		Minor1	
Conflicting Flow All	0	0	1361	0	2753	1356
Stage 1	-	-	-	-	1356	-
Stage 2	-	-	-	-	1397	-
Critical Hdwy	-	-	4.25	-	6.55	6.35
Critical Hdwy Stg 1	-	-	-	-	5.55	-
Critical Hdwy Stg 2	-	-	-	-	5.55	-
Follow-up Hdwy	-	-	2.335	-	3.635	3.435
Pot Cap-1 Maneuver	-	-	465	-	20	171
Stage 1	-	-	-	-	225	-
Stage 2	-	-	-	-	214	-
Platoon blocked, \%	-	-		-		
Mov Cap-1 Maneuver	-	-	465	-	20	171
Mov Cap-2 Maneuver	-	-	-	-	109	-
Stage 1	-	-	-	-	225	-
Stage 2	-	-	-	-	211	-
Approach	EB		WB		NB	
HCM Control Delay, s	0		0.1		37.5	
HCM LOS					E	
Minor Lane/Major Mvmt		NBLn1	EBT	EBR	2 WBL	WBT
Capacity (veh/h)		127	-	-	465	-
HCM Lane V/C Ratio		0.128	-	-	0.014	-
HCM Control Delay (s)		37.5	-	-	12.9	-
HCM Lane LOS		E	-	-	B	-
HCM 95th \%tile Q(veh)		0.4	-	-	0	-

Intersection						
Int Delay, s/veh	0.3					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	\mathbf{F}			A	Mr	
Traffic Vol, veh/h	1035	15	5	1285	15	5
Future Vol, veh/h	1035	15	5	1285	15	5
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	0	-	0	-
Veh in Median Storage, $\#$	0	-	-	0	1	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	5	15	15	5	15	15
Mvmt Flow	1125	16	5	1397	16	5

Major/Minor M	Major1		Major2		Minor1	
Conflicting Flow All	0	0	1141	0	2540	1133
Stage 1	-	-	-	-	1133	-
Stage 2	-	-	-	-	1407	-
Critical Hdwy	-	-	4.25	-	6.55	6.35
Critical Hdwy Stg 1	-	-	-	-	5.55	-
Critical Hdwy Stg 2	-	-	-	-	5.55	-
Follow-up Hdwy	-	-	2.335	-	3.635	3.435
Pot Cap-1 Maneuver	-	-	567	-	27	232
Stage 1	-	-	-	-	290	-
Stage 2	-	-	-	-	212	-
Platoon blocked, \%	-	-		-		
Mov Cap-1 Maneuver	-	-	567	-	27	232
Mov Cap-2 Maneuver	-	-	-	-	123	-
Stage 1	-	-	-	-	290	-
Stage 2	-	-	-	-	210	-
Approach	EB		WB		NB	
HCM Control Delay, s	0		0		35.6	
HCM LOS					E	
Minor Lane/Major Mvmt		NBLn1	EBT	EBR	2 WBL	WBT
Capacity (veh/h)		139	-	-	567	-
HCM Lane V/C Ratio		0.156	-	-	0.01	-
HCM Control Delay (s)		35.6	-	-	11.4	-
HCM Lane LOS		E	-	-	B	-
HCM 95th \%tile Q(veh)		0.5	-	-	0	-

Intersection						
Int Delay, s/veh	0.5					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	\mathbf{F}			A	Mr	
Traffic Vol, veh/h	1245	15	10	1275	15	10
Future Vol, veh/h	1245	15	10	1275	15	10
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	0	-	0	-
Veh in Median Storage, $\#$	0	-	-	0	1	-
Grade, \%	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	5	15	15	5	15	15
Mvmt Flow	1353	16	11	1386	16	11

Major/Minor M	Major1		Major2		Minor1	
Conflicting Flow All	0	0	1369	0	2769	1361
Stage 1	-	-	-	-	1361	-
Stage 2	-	-	-	-	1408	-
Critical Hdwy	-	-	4.25	-	6.55	6.35
Critical Hdwy Stg 1	-	-	-	-	5.55	-
Critical Hdwy Stg 2	-	-	-	-	5.55	-
Follow-up Hdwy	-	-	2.335	-	3.635	3.435
Pot Cap-1 Maneuver	-	-	462	-	19	170
Stage 1	-	-	-	-	224	-
Stage 2	-	-	-	-	212	-
Platoon blocked, \%	-	-		-		
Mov Cap-1 Maneuver	-	-	462	-	19	170
Mov Cap-2 Maneuver	-	-	-	-	107	-
Stage 1	-	-	-	-	224	-
Stage 2	-	-	-	-	207	-
Approach	EB		WB		NB	
HCM Control Delay, s	0		0.1		41.3	
HCM LOS					E	
Minor Lane/Major Mvmt		NBLn1	EBT	EBR	2 WBL	WBT
Capacity (veh/h)		126	-	-	462	-
HCM Lane V/C Ratio		0.216	-		0.024	-
HCM Control Delay (s)		41.3	-	-	13	-
HCM Lane LOS		E	-	-	B	-
HCM 95th \%tile Q(veh)		0.8	-	-	0.1	-

Major/Minor M	Major1		Major2		Minor1	
Conflicting Flow All	0	0	1141	0	1702	571
Stage 1	-	-	-	-	1133	-
Stage 2	-	-	-	-	569	-
Critical Hdwy	-	-	5.6	-	6	7.4
Critical Hdwy Stg 1	-	-	-	-	6.9	-
Critical Hdwy Stg 2	-	-	-	-	6.3	-
Follow-up Hdwy	-	-	3.25	-	3.95	4.05
Pot Cap-1 Maneuver	-	-	301	-	118	373
Stage 1	-	-	-	-	182	-
Stage 2	-	-	-	-	453	-
Platoon blocked, \%	-	-		-		
Mov Cap-1 Maneuver	-	-	301	-	116	373
Mov Cap-2 Maneuver	-	-	-	-	156	-
Stage 1	-	-	-	-	182	-
Stage 2	-	-	-	-	445	-
Approach	EB		WB		NB	
HCM Control Delay, s	0		0.1		27.3	
HCM LOS					D	
Minor Lane/Major Mvmt		NBLn1	EBT	EBR	$? \mathrm{WBL}$	WBT
Capacity (veh/h)		183	-	-	301	-
HCM Lane V/C Ratio		0.119	-	-	0.018	-
HCM Control Delay (s)		27.3	-	-	17.2	-
HCM Lane LOS		D	-	-	C	-
HCM 95th \%tile Q(veh)		0.4	-	-	0.1	-

Major/Minor M	Major1		Major2		Minor1	
Conflicting Flow All	0	0	1369	0	1937	685
Stage 1	-	-	-	-	1361	-
Stage 2	-	-	-	-	576	-
Critical Hdwy	-	-	5.6	-	6	7.4
Critical Hdwy Stg 1	-	-	-	-	6.9	-
Critical Hdwy Stg 2	-	-	-	-	6.3	-
Follow-up Hdwy	-	-	3.25	-	3.95	4.05
Pot Cap-1 Maneuver	-	-	229	-	87	312
Stage 1	-	-	-	-	129	-
Stage 2	-	-	-	-	449	-
Platoon blocked, \%	-	-		-		
Mov Cap-1 Maneuver	-	-	229	-	83	312
Mov Cap-2 Maneuver	-	-	-	-	113	-
Stage 1	-	-	-	-	129	-
Stage 2	-	-	-	-	427	-
Approach	EB		WB		NB	
HCM Control Delay, s	0		0.2		33.8	
HCM LOS					D	
Minor Lane/Major Mvmt		NBLn1	EBT	EBR	R WBL	WBT
Capacity (veh/h)		152	-	-	229	-
HCM Lane V/C Ratio		0.179	-	-	0.047	-
HCM Control Delay (s)		33.8	-	-	21.5	-
HCM Lane LOS		D	-	-	C	-
HCM 95th \%tile Q(veh)		0.6		-	0.1	-

APPENDIX D

Traffic Signal Warrant Figure

WARRANT 2 - FOUR HOUR VEHICULAR VOLUME (70\% FACTOR)
(COMMUNITY LESS THAN 10,000 POPULATION OR ABOVE $70 \mathrm{~km} / \mathrm{h}$ (40 mph) ON MAJOR STREET)

* NOTE: 80 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACH WITH TWO OR MORE LANES AND 60 VPH APPLIES AS THE LOWER

AURORA RV STORAGE
JEWELL AVE \& ROME WAY
FOUR HOUR VOLUME WARRANT THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE.

2040 PM Peak Hour Traffic Volume Projections

Source: Manual of Uniform Traffic Control Devices 2009

APPENDIX E

Conceptual Site Plan

[^0]: ${ }^{1}$ Institute of Transportation Engineers, Trip Generation Manual, Tenth Edition, Washington DC, 2017.

[^1]: ${ }^{2}$ Transportation Research Board, Highway Capacity Manual, Sixth Edition, Washington DC, 2016.

