Final Drainage Letter

Eastern Hills South 4-65 17-18 3AH-3DH, 4AH-4DH Pad Aurora Condition Use Permit

City of Aurora Case No. DA-2155-00

Prepared for:
ConocoPhillips Company
34501 E. Quincy Ave., Bldg. 1
Watkins, CO 80137
303-268-3773
Kathy Denzer

Prepared by:
Ascent Geomatics Solutions
8620 Wolff Court
Westminster, CO 80031
303-928-7128
Michael Welker

FACSIMILE

This electronic plan is a facsimile of the signed and sealed PDF set.

ConocoPhillips

Craig Perl, P.E. Senior Engineer
City of Aurora
Public Works Department
Engineering Control Division
15151 E. Alameda Avenue
Aurora, CO 80012

RE: Eastern Hills South 4-65 17-18 3AH-3DH, 4AH-4DH Pad
 City of Aurora Oil and Gas Well Permit
 Final Drainage Letter
 City of Aurora Case No. DA-2155-00

Dear Mr. Perl,
The Eastern Hills South 4-65 17-18 3AH-3DH, 4AH-4DH Pad (hereafter referred to as "Site") is located in Section 17, Township 4 South, Range 65 West of the $6^{\text {th }}$ Principal Meridian, in the City of Aurora, Arapahoe County, Colorado. The pad is generally located approximately 2.8 miles south of I-70 and approximately 2.5 miles east of Highway E-470. More specifically the pad is located along South Powhaton Road approximately 6,500 feet north of East Jewell Avenue (County Road 18) and 8,000 feet south of East $3^{\text {rd }}$ Avenue. The $3^{\text {rd }}$ Avenue and Powhaton Road intersection serves as a secondary entrance to the Traditions residential development. The Site is also 1 mile northeast of the Murphy Creek residential development. A vicinity map is included as Figure 1 below.

ConocoPhillips

The existing landscape and land use of the proposed Site is rangeland or grazing land and the Site is zoned Northeastern Plains Residential. The existing topography generally drains from southeast to northwest at an existing grade of the disturbed area is approximately $0.3-1 \%$, with the undisturbed upstream basin having slopes of approximately 1% to 11% slope. According to the USDA Web Soil Survey contains exclusively Nunn-Bresser-Ascalon complex, hydrologic Type B soils in the disturbed areas. The upstream basin contains a percentage of Truckton loamy sand, Type A hydrologic soils in the southeast corner of the basin. The web Soil Map and Descriptions are attached.

Proposed improvements include a 500 foot by 580 foot graded pad in support of drilling oil and gas wells. Also proposed is a 1,450 -linear foot, 23 -foot wide gravel access road, connecting to another site access approximately 1,300 feet north the Site. This access road connects another drill pad to the northwest to South Powhaton Road, which is immediately to the east of the pad.

Eight proposed wellheads are located 375 feet west of the east edge of the pad, spaced 25 feet apart with the northern-most well located 150 feet south of the north edge of the pad and the southern-most well located 174 feet north of the south edge of the pad.

The Site is located within the Coal Creek drainage basin. As indicated by the attached FEMA FIRMette, the proposed Site is within FIRM Panel Number 08005C0208L, panel 208 of 725, dated February 17, 2017. The pad is shown to be located within unshaded Flood Zone X, an area outside the 0.2% annual chance floodplain. The Site is not included within a Special Flood Hazard Area and therefore FEMA considers it an area of minimal flooding.

The design of the Site drainage, is based on the Urban Drainage and Flood Control District Urban Storm Drainage Criteria Manual (USCM) design guides and best practices, and the deviations from these best practices listed in the City of Aurora's Rules and Regulations Regarding Stormwater Discharges Associated with Construction Activities and Storm Drainage and Technical Criteria.

The onsite and offsite diversion ditches, and the sediment capture volumes were calculated using the rational method due to the relatively small sub basin sizes. These sub-basins are illustrated in the attached Drainage Basin Boundary Map. The proposed onsite and offsite diversion ditches, and culverts were sized for the 100 year 1 hour storm using Figure RA-6 from UDFCD Volume 1, see attached. The hydrologic calculations were used in the Urban Drainage Rational Workbook attached.

The Site gravel pad was assumed to be the 40 percent impervious for gravel roads, and the offsite drainage was assumed to be the 2% Historic Flow Analysis, Greenbelts, and Agricultural imperviousness listed in the Aurora Drainage and Technical Criteria Appendix Table 1. The

ConocoPhillips

onsite and offsite ditches we divided into east and west by the high point on the southeast corner of the Site.

The onsite pad for the drilling phase is 7.82 acres with an overall surface disturbance of 11.45 acres. The disturbance area is comprised of the onsite basin, seeded topsoil stockpile, seeded excess stockpiles, Sediment Basin, and diversion swales. The production phase pad surface (4.42 acres) itself is not included in the tributary area used to size the sediment basin as agreed upon by the Aurora Water Department. Therefore, the sediment basin was sized for 7.03 acres (11.45ac.-4.42ac.). The sediment basin is located near the northwest corner of the pad, includes 1' of freeboard, and will be used as a permanent BMP (to be maintained by the Site owner) to enhance the water quality of the runoff from the Site as long as there is activity on the Site. Due to vertical constraints the sediment basin is shallower than the preferred, standard basin but will have a larger footprint to meet storage requirements. The basin was sized according torCQA storm Drainage Designand mecknicarcriteriamanuai Table kanduDFCD Table SB-1. An outlet structure has been designed with four orifice holes (2"H x 4"W) to drain the sediment basin in less than 72 hours. Please see the attached Drainage Basin Boundary Map, Sediment Basin Stage-Storage, and Stormwater Detention and Infiltration spreadsheets.

Four culverts are proposed for the Site. Culvert A is for Diversion Ditch 1 collecting the eastern flows under the proposed access road connection the pad within Onsite Basin 1. This culvert is designed as a 1.25 ' $\times 7 \mathrm{P}^{5}$ ' open channel with cattle guard. Culvert B is designed to carry flow from Offsite Basin 2 - 1 men the promposed access road near its northern terminus. This culvert is designed as a 1 'x7'open channel with cattle guard. Culvert C is located in the proposed access road approximately 310 feet north of the pad at the existing drainage swale. Culvert C is designed as a 24 " RCP to handle offsite flows from Offsite Basin 3 under the raised access road. Finally, Culvert D is located in the proposed access road approximately 145 feet north of the pad at the existing drainage swale. Culvert D is designed as a $12^{\prime \prime}$ RCP to handle offsite flows from Offsite Basin 4 under the raised access road. Type M (12") riprap reinforcement will be placed at each of the culvert outlets. Culvert calculations are detailed in the UD Culvert workbooks attached.

The Rational Method was used to compute peak flows draining into the two onsite diversion ditches. The catchment area draining into Onsite Diversion Ditch 1 was found to be 12.04 acres with an imperviousness of 11% resulting in a 100-year flow rate of 17.72 cfs. Onsite Diversion Ditch 1 capable of conveying 18.68 cfs has been designed, with a 3:1 side slope, a minimum slope of 0.11%, a total depth of 1.25 ', and a bottom width of 7.5^{\prime}. Flow in Diversion Ditch 1 will pass through Culvert A before reaching the sediment basin. The catchment area draining into Onsite Diversion Ditch 2 was found to be 4.13 acres with an imperviousness of 35% resulting in a 100-year flow rate of 11.70 cfs. Onsite Diversion Ditch 2 capable of conveying 15.76 cfs has been designed, with a $3: 1$ side slope, a minimum slope of 0.11%, a total depth of 1.25 , and a

ConocoPhillips

bottom width of 6^{\prime}. Onsite Diversion Ditch 2 will be relocated after the drilling phase for the production phase. The relocated ditch will carry less flow during the production phase but will be left at the minimum USDCM depth to provide a conservative capacity.

The Rational Method was used to compute peak flows draining into one offsite diversion ditch. The catchment area draining into Offsite Diversion Ditch 1 was found to be 16.28 acres with an imperviousness of 2% resulting in a 100-year flow rate of 21.48 cts. Offsite Diversion Ditch 1 capable of conveying 24.32 cfs has been designed, with a $3: 1$ side slope, a minimum slope of 0.25%, a total depth of 1.25 ', and a bottom width of 5.0^{\prime}. Offsite Diversion Ditch 1 will redirect offsite flows from Offsite Basin 1 around the site where it will be discharged west of the site and resume historic flow patterns.

The 23 ' wide access road is crowned with 1.25 ' deep swale along portions of each side. The swale on the east side of the access road within Offsite Basin 2 will collect a small amount of runoff and direct it to Culvert B where it will resume historic flow patterns. The swale on the east side of the access road within Offsite Basin 3 will collect a small amount of runoff and direct it to Culvert C where it will resume historic flow patterns. The swale on the south side of the access road within Offsite Basin 4 will collect a small amount of runoff and direct it to Culvert D where it will resume historic flow patterns.

Calculations for the diversion ditches, culverts, and riprap sizing are provided with this letter.

No adverse drainage impacts to the surrounding Site, properties, or floodplain resulting from the construction of the Site are anticipated. If the drainage patterns or imperviousness characteristics substantially deviate from what was considered in this drainage letter and the accompanying SWMP \& Site Plan, the City of Aurora shall be notified. If you have any questions regarding the drainage associated with this project, please do not hesitate to call me at 303.928.7128.

Sincerely,

Michael Welter, PE, CFM
Ascent Geomatics Solutions

Appendix A

National Flood Hazard Layer FIRMette

MAP LEGEND

Area of Interest (AOI)	\square	C
Area of Interest (AOI)	\square	C/D
Soils	\square	D
Soil Rating Polygons		
A	\square	Not rated or not available
A/D	Water Fe	ures
B	\sim	Streams and Canals
	Transportation	
B/D	H+	Rails
C	~	Interstate Highways
C/D	-	US Routes
D	\approx	Major Roads
Not rated or not available	D-	Local Roads
Soil Rating Lines	Background	
\cdots A		Aerial Photography
\cdots A/D		
\cdots B		
$\cdots B / D$		
$\cdots \mathrm{C}$		
$\cdots \mathrm{C} / \mathrm{D}$		
\cdots D		
* Not rated or not available		
Soil Rating Points		
$\square \quad \mathrm{A}$		
$\square \quad \mathrm{A} / \mathrm{D}$		
$\square \quad \mathrm{B}$		
- B/D		

MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:20,000.

Warning: Soil Map may not be valid at this scale.
Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale

Please rely on the bar scale on each map sheet for map measurements.
Source of Map: Natural Resources Conservation Service Web Soil Survey URL:
Coordinate System: Web Mercator (EPSG:3857)
Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.
This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.
Soil Survey Area: Arapahoe County, Colorado
Survey Area Data: Version 14, Sep 10, 2018
Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.

Date(s) aerial images were photographed: Jul 17, 2015—Oct 2 2017

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
NrB	Nunn-Bresser-Ascalon complex, 0 to 3 percent slopes	B	9.0	100.0%
Totals for Area of Interest				

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition

Component Percent Cutoff: None Specified

Tie-break Rule: Higher

Figure RA-6—Rainfall Depth-Duration-Frequency: 100-Year, 1-Hour Rainfall

Appendix B

CALCULATION OF A PEAK RUNOFF USING RATIONAL METHOD

Project Title \qquad
I. Catchment Hydrologic Data

Catchment ID = ON-1
Area $=\frac{12.04}{}$ Acres
Percent Imperviousness $=11.00 \%$
NRCS Soil Type $=\square B A, B, C$ or D
II. Rainfall Information $1($ inch $/ \mathrm{hr})=\mathbf{C 1}$ * $\mathrm{P} 1 /(\mathrm{C} 2+\mathrm{Td})^{\wedge} \mathbf{C} 3$

Design Storm Return Period, $\mathrm{Tr}=$ \qquad 0 years (input return period for design storm) C1 (input the value of C 1)

-	10.50
C3=	0.786
P1 $=$	2.68

III. Analysis of Flow Time (Time of Concentration) for a Catchment

```
Runoff Coefficient, C =
``` \(\qquad\)
``` 0.41 Overide Runoff Coefficient, C =
``` \(\qquad\)
``` (enter an overide C value if desired, or leave blank to accept calculated C .)
5-yr. Runoff Coefficient, C-5 =
``` \(\qquad\)
```

Overide 5 -yr. Runoff Coefficient, $\mathrm{C}=$

``` \(\qquad\)
``` (enter an overide C-5 value if desired, or leave blank to accept calculated C-5.)
```

Illustration

NRCS Land Type	Heavy Meadow	Tillage/ Field	Short Pasture/ Lawns	Nearly Bare Ground	Grassed Swales/ Waterways	 Shallow Paved Swales (Sheet Flow)
Conveyance	2.5	5	7	10	15	20

Calculations:

IV. Peak Runoff Prediction

Rainfall Intensity at Computed Tc, I= \qquad Peak Flowrate, $\mathrm{Qp}=$ \qquad Peak Flowrate, $\mathrm{Qp}=17.72 \mathrm{cfs}$

CALCULATION OF A PEAK RUNOFF USING RATIONAL METHOD

Project Title \qquad
I. Catchment Hydrologic Data

Catchment ID = ON-2
Area $=4.13$ Acres
Percent Imperviousness $=35.00 \%$
NRCS Soil Type $=\square B A, B, C$ or D
II. Rainfall Information I(inch/hr) = C1 * P1 /(C2 + Td) ${ }^{\wedge} \mathbf{C} 3$

Design Storm Return Period, $\mathrm{Tr}=$ \qquad 0 years (input return period for design storm) C1 (input the value of C 1)

C2=	10.00
C3=	0.786
P1=	26

III. Analysis of Flow Time (Time of Concentration) for a Catchment

```
Runoff Coefficient, C =
``` \(\qquad\)
``` 0.48 Overide Runoff Coefficient, C= (enter an overide C value if desired, or leave blank to accept calculated C.)
5-yr. Runoff Coefficient, C-5 =
``` \(\qquad\)
\(\qquad\)
``` (enter an overide C-5 value if desired, or leave blank to accept calculated C-5.)
```

Illustration

NRCS Land Type	Heavy Meadow	Tillage/ Field	Short Pasture/ Lawns	Nearly Bare Ground	Grassed Swales/ Waterways	 Shallow Paved Swales (Sheet Flow)
Conveyance	2.5	5	7	10	15	20

Calculations:

IV. Peak Runoff Prediction

Rainfall Intensity at Computed Tc, I= \qquad Peak Flowrate, $\mathrm{Qp}=\quad 5.61 \mathrm{cfs}$ Peak Flowrate, $\mathrm{Qp}=1.11 .70 \mathrm{cfs}$

CALCULATION OF A PEAK RUNOFF USING RATIONAL METHOD

Project Title:
 \qquad Eastern Hills South 4-65 17-18 3AH-3DH, 4AH-4DH Pad

 Catchment ID: \qquadI. Catchment Hydrologic Data

Catchment ID = OFF-1
Area $=\frac{16.28}{2}$ Acres
Percent Imperviousness $=\frac{2.00}{\%}$
NRCS Soil Type $=\begin{array}{r}\square \\ \end{array}, B, C$, or D
II. Rainfall Information I (inch/hr) = C1 * P1 /(C2 + Td)^C3

Design Storm Return Period, Tr = \qquad 0 years (input return period for design storm) C1 $=$ (input the value of C 1)
C2 $=$
C3 $=$
P1 $=$ (input the value of C 2) (input the value of C3) (input one-hr precipitation--see Sheet "Design Info")

III. Analysis of Flow Time (Time of Concentration) for a Catchment

```
Runoff Coefficient, C =
``` \(\qquad\)
``` 0.36 Overide Runoff Coefficient, C =
``` \(\qquad\)
``` (enter an overide C value if desired, or leave blank to accept calculated C.)
5-yr. Runoff Coefficient, C-5 =
```

\qquad

``` (enter an overide C-5 value if desired, or leave blank to accept calculated C-5.)
```

Overide 5 -yr. Runoff Coefficient, $\mathrm{C}=\square$ (enter an overide C - 5 va

NRCS Land Type	Heavy Meadow	Tillage/ Field	Short Pasture/ Lawns	Nearly Bare Ground	Grassed Swales/ Waterways	 Shallow Paved Swales (Sheet Flow)
Conveyance	2.5	5	7	10	15	20

Calculations:

Reach ID	$\begin{gathered} \hline \text { Slope } \\ \mathrm{S} \\ \\ \mathrm{ft} / \mathrm{ft} \\ \text { input } \\ \hline \end{gathered}$	Length L ft input	5-yr Runoff Coeff C-5 output	NRCS Conveyance input	Flow Velocity V fps output	Flow Time Tf minutes output
Overland	0.0690	300	0.08	N/A	0.30	16.84
1	0.0130	1,376		10.00	1.14	20.11
2						
3						
4						
5						
	Sum	1,676		Computed Tc = Regional $\mathrm{Tc}=$ User-Entered Tc =		36.95
						19.31
						38.02

IV. Peak Runoff Prediction

Rainfall Intensity at Computed Tc, I= \qquad Peak Flowrate, $\mathrm{Qp}=$ \qquad Peak Flowrate, $\mathrm{Qp}=-21.48 \mathrm{cfs}$

CALCULATION OF A PEAK RUNOFF USING RATIONAL METHOD

Project Title:

\qquad

I. Catchment Hydrologic Data

Catchment ID $=$ OFF-2
Area $=\frac{4.01}{}$ Acres
Percent Imperviousness $=\frac{3.00}{\%}$
NRCS Soil Type $=\square B$ B A, B, C or D
II. Rainfall Information I (inch/hr) = C1 * P1 /(C2 + Td)^C3

Design Storm Return Period, Tr = \qquad 0 years (input return period for design storm) C1 $=$ (input the value of C 1)
C2 $=$
C3 $=$
P1 $=$ (input the value of C 2) (input the value of C3) (input one-hr precipitation--see Sheet "Design Info")

III. Analysis of Flow Time (Time of Concentration) for a Catchment

```
Runoff Coefficient, C =
``` \(\qquad\)
``` 0.37
Overide Runoff Coefficient, \(\mathrm{C}=\)
``` \(\qquad\)
``` (enter an overide \(C\) value if desired, or leave blank to accept calculated C.)
5-yr. Runoff Coefficient, C-5 =
```

\qquad

``` (enter an overide C-5 value if desired, or leave blank to accept calculated C-5.)
```

Illustration

IV. Peak Runoff Prediction

Rainfall Intensity at Computed Tc, I= Rainfall Intensity at User-Defined Tc, I =
\qquad $6.29 \mathrm{inch} / \mathrm{hr}$ $6.63 \mathrm{inch} / \mathrm{hr}$

CALCULATION OF A PEAK RUNOFF USING RATIONAL METHOD

Project Title:

\qquad

I. Catchment Hydrologic Data

Catchment ID $=$ OFF-3
Area $=\begin{aligned} & 5.71 \\ & \text { Acres }\end{aligned}$
Percent Imperviousness $=\frac{3.00}{} \%$
NRCS Soil Type $=\square B A, B, C$ or D
II. Rainfall Information I (inch/hr) = C1 * P1 /(C2 + Td)^C3

Design Storm Return Period, Tr = \qquad 0 years (input return period for design storm) C1 $=$ (input the value of C1)
C2 $=$
C3 $=$
P1 $=$ (input the value of C 2) (input the value of C3) (input one-hr precipitation--see Sheet "Design Info")

III. Analysis of Flow Time (Time of Concentration) for a Catchment

```
Runoff Coefficient, C =
``` \(\qquad\)
``` 0.37 Overide Runoff Coefficient, \(\mathrm{C}=\)
``` \(\qquad\)
``` (enter an overide C value if desired, or leave blank to accept calculated C.)
5-yr. Runoff Coefficient, C-5 =
```

\qquad

``` (enter an overide C-5 value if desired, or leave blank to accept calculated C-5.)
``` Illustration


\section*{IV. Peak Runoff Prediction}

Rainfall Intensity at Computed Tc, I = \(\qquad\) Peak Flowrate, \(\mathrm{Qp}=\) \(\qquad\) Peak Flowrate, Qp \(=\square 9.19 \mathrm{cfs}\)

\section*{CALCULATION OF A PEAK RUNOFF USING RATIONAL METHOD}

\section*{Project Title:}
\(\qquad\)

\section*{I. Catchment Hydrologic Data}

Catchment ID = OFF-4
Area \(=1.01\) Acres
Percent Imperviousness \(=\frac{2.00}{}\) \%
NRCS Soil Type \(=\begin{array}{r}\square \\ \end{array}, B, C\), or D
II. Rainfall Information I (inch/hr) = C1 * P1 /(C2 + Td)^C3

Design Storm Return Period, Tr = \(\qquad\) 0 years (input return period for design storm) C1 \(=\) (input the value of C 1)
C2 \(=\)
C3 \(=\)
P1 \(=\) (input the value of C 2) (input the value of C3) (input one-hr precipitation--see Sheet "Design Info")

\section*{III. Analysis of Flow Time (Time of Concentration) for a Catchment}
```

Runoff Coefficient, C = $\square$ 0.36 Overide Runoff Coefficient, $\mathrm{C}=$

``` \(\qquad\)
``` (enter an overide \(C\) value if desired, or leave blank to accept calculated C.)
5-yr. Runoff Coefficient, C-5 =
``` \(\qquad\)
``` (enter an overide C-5 value if desired, or leave blank to accept calculated C-5.)
```

Illustration

IV. Peak Runoff Prediction

Rainfall Intensity at Computed Tc, I= \qquad Peak Flowrate, $\mathrm{Qp}=\begin{array}{r}1.61 \\ \text { cfs } \\ \text { Peak Flowrate, } \mathrm{Qp}= \\ 2.44\end{array} \mathrm{cfs}$

Appendix C

Normal Flow Analysis - Trapezoidal Channel

Project:
Eastern Hills South 4-65 17-18 3AH-3DH, 4AH-4DH Pad
Onsite Diversion Ditch 1
Design Flow $=$ Q-100yr $=17.72$ cfs (ON-1)
Channel ID:

Design Information (Input)		
Channel Invert Slope	So $=$	$0.0011 \mathrm{ft} / \mathrm{ft}$
Manning's n	n	0.035
Bottom Width	B	7.50 ft
Left Side Slope	Z1 =	$3.00 \mathrm{ft} / \mathrm{ft}$
Right Side Slope	Z2 =	$3.00 \mathrm{ft} / \mathrm{ft}$
Freeboard Height		0.00 ft
Design Water Depth		1.25 ft
Normal Flow Condtion (Calculated)		
Discharge	Q	18.68 cfs
Froude Number	$\mathrm{Fr}=$	0.24
Flow Velocity	V	1.33 fps
Flow Area	A	14.06 sq ft
Top Width		15.00 ft
Wetted Perimeter	P	15.41 ft
Hydraulic Radius	$\mathrm{R}=$	0.91 ft
Hydraulic Depth	$\mathrm{D}=$	0.94 ft
Specific Energy	Es =	1.28 ft
Centroid of Flow Area	$\mathrm{Yo}=$	0.55 ft
Specific Force	Fs $=$	0.53 kip

Normal Flow Analysis - Trapezoidal Channel

Project:

Eastern Hills South 4-65 17-18 3AH-3DH, 4AH-4DH Pad

Onsite Diversion Ditch 2
Channel ID:
Design Flow $=$ Q-100yr $=11.70$ cfs. (ON-2)

Design Information (Input)		
Channel Invert Slope	So =	$0.0011 \mathrm{ft} / \mathrm{ft}$
Manning's n	$\mathrm{n}=$	0.035
Bottom Width	B	6.00 ft
Left Side Slope	Z1 =	$3.00 \mathrm{ft} / \mathrm{ft}$
Right Side Slope	Z2 =	$3.00 \mathrm{ft} / \mathrm{ft}$
Freeboard Height	F	0.00 ft
Design Water Depth	Y $=$	1.25 ft
Normal Flow Condtion (Calculated)		
Discharge	Q	15.76 cfs
Froude Number	$\mathrm{Fr}=$	0.24
Flow Velocity	V	1.29 fps
Flow Area	A	12.19 sq ft
Top Width		13.50 ft
Wetted Perimeter	P	13.91 ft
Hydraulic Radius	R	0.88 ft
Hydraulic Depth	D	0.90 ft
Specific Energy	Es =	1.28 ft
Centroid of Flow Area	Yo =	0.54 ft
Specific Force	Fs =	0.45 kip

Normal Flow Analysis - Trapezoidal Channel

Project:

Eastern Hills South 4-65 17-18 3AH-3DH, 4AH-4DH Pad

Offsite Diversion Ditch 1
Channel ID:
Design Flow $=$ Q-100yr $=21.48$ cfs. (OFF-1)

Design Information (Input)		
Channel Invert Slope	So =	$0.0025 \mathrm{ft} / \mathrm{ft}$
Manning's n	n	0.030
Bottom Width	B =	5.00 ft
Left Side Slope	Z1 =	$3.00 \mathrm{ft} / \mathrm{ft}$
Right Side Slope	Z2 =	$3.00 \mathrm{ft} / \mathrm{ft}$
Freeboard Height	F	0.00 ft
Design Water Depth	$Y=$	1.25 ft
Normal Flow Condtion (Calculated)		
Discharge	Q =	24.32 cfs
Froude Number	$\mathrm{Fr}=$	0.42
Flow Velocity	$\mathrm{V}=$	2.22 fps
Flow Area	A =	10.94 sq ft
Top Width	T =	12.50 ft
Wetted Perimeter	P	12.91 ft
Hydraulic Radius	R	0.85 ft
Hydraulic Depth	D =	0.88 ft
Specific Energy	Es =	1.33 ft
Centroid of Flow Area	Yo =	0.53 ft
Specific Force	Fs =	0.47 kip

BOX CONDUIT FLOW (Normal \& Critical Depth Computation)

Project: Eastern Hills South 4-65 17-18 3AH-3DH, 4AH-4DH Pad
Box ID: Culvert A - Open Channel w/ Cattle Guard (ON-1)

Determination of Culvert Headwater and Outlet Protection

Project: Eastern Hills South 4-65 17-18 3AH-3DH, 4AH-4DH Pad
Basin ID: Culvert A

Soil Type: \qquad
C Sandy
O Non-Sandy
Supercritical Flow! Using Ha to calculate protection type.

Design Information (Input):		
Design Discharge	Q =	17.72 cfs
Circular Culvert:		
Barrel Diameter in Inches	$D=$	inches
Inlet Edge Type (Choose from pull-down list)	Groved End Projection	∇
Box Culvert:		OR
Barrel Height (Rise) in Feet	Height (Rise) $=$	1.25 ft
Barrel Width (Span) in Feet	Width (Span) =	7.5 ft
Inlet Edge Type (Choose from pull-down list)	Square Edge w/ $90-15$ deg, Heatwall	∇
Number of Barrels	No =	1
Inlet Elevation	Elev $1 \mathrm{~N}=$	5638.28
Outlet Elevation OR Slope	Elev OUT =	5637.95
Culvert Length	L =	48.5
Manning's Roughness	$\mathrm{n}=$	0.013
Bend Loss Coefficient	$\mathrm{k}_{\mathrm{b}}=$	0
Exit Loss Coefficient	$\mathrm{k}_{\mathrm{x}}=$	1
Tailwater Surface Elevation	Elev $\mathrm{Y}_{\mathrm{t}}=$	ft
Max Allowable Channel Velocity	$V=$	7 ft/s
Required Protection (Output):		
Tailwater Surface Height	$\mathrm{Y}_{\mathrm{t}}=$	0.50
Flow Area at Max Channel Velocity	$\mathrm{A}_{\mathrm{t}}=$	2.53 ft ${ }^{2}$
Culvert Cross Sectional Area Available	$\mathrm{A}=$	9.38 ft ${ }^{\text {2 }}$
Entrance Loss Coefficient	$\mathrm{k}_{\mathrm{e}}=$	0.50
Friction Loss Coefficient	$\mathrm{k}_{\mathrm{f}}=$	1.12
Sum of All Losses Coefficients	$\mathrm{k}_{\mathrm{s}}=$	2.62
Culvert Normal Depth	$\mathrm{Y}_{\mathrm{n}}=$	0.46
Culvert Critical Depth	$Y_{c}=$	0.56
Tailwater Depth for Design	$d=$	0.90 ft
Adjusted Diameter OR Adjusted Rise	$\mathrm{H}_{\mathrm{a}}=$	0.85
Expansion Factor	$1 /\left(2^{*} \tan (\Theta)\right)=$	6.65
Flow/Diameter ${ }^{2.5}$ OR Flow/(Span * Rise ${ }^{1.5}$)	$\mathrm{Q} / \mathrm{WH}^{\wedge} 1.5=$	1.69 ft ${ }^{0.5} / \mathrm{s}$
Froude Number	$\mathrm{Fr}=$	1.35 Supercritical!
Tailwater/Adjusted Diameter OR Tailwater/Adjusted Rise	$\mathrm{Yt} / \mathrm{H}=$	0.59
Inlet Control Headwater	$\mathrm{HW}_{1}=$	0.94 ft
Outlet Control Headwater	$\mathrm{HW}_{\mathrm{O}}=$	0.72
Design Headwater Elevation	HW =	5,639.22 ft
Headwater/Diameter OR Headwater/Rise Ratio	HW/H =	0.75
Minimum Theoretical Riprap Size	$\mathrm{d}_{50}=$	in
Nominal Riprap Size	$\mathrm{d}_{50}=$	6 in
UDFCD Riprap Type	Type $=$	VL
Length of Protection	$\mathrm{L}_{\mathrm{p}}=$	ft
Width of Protection	$\mathrm{T}=$	ft

Project: Eastern Hills South 4-65 17-18 3AH-3DH, 4AH-4DH Pad
Basin ID: Culvert A
Status: \qquad

Design Information (Input):
Circular Culvert: Barrel Diameter in Inches

Inlet Edge Type (choose from pull-down list)

OR:
Box Culvert: Barrel Height (Rise) in Feet
Barrel Width (Span) in Feet
Inlet Edge Type (choose from pull-down list)

Number of Barrels
Inlet Elevation at Culvert Invert
Outlet Elevation at Culvert Invert OR Slope of Culvert (ft v./ft h.)
Culvert Length in Feet
Manning's Roughness
Bend Loss Coefficient
Exit Loss Coefficient

Design Information (calculated):
Entrance Loss Coefficient

$\mathrm{K}_{\mathrm{e}}=$	0.50
$\mathrm{K}_{\mathrm{f}}=$	1.12
$\mathrm{K}_{\mathrm{s}}=$	2.62
$\mathrm{C}_{\mathrm{d}}=$	0.83
$\mathrm{KE}_{\text {low }}=$	0.3969

Calculations of Culvert Capacity (output):

Water Surface Elevation (ft., linked)	Tailwater Surface Elevation ft	Culvert Inlet-Control Flowrate cfs	Culvert Outlet-Control Flowrate cfs	Controlling Culvert Flowrate cfs (output)	Inlet Equation Used:	Flow Control Used
5639.15		15.80	28.69	15.80	Regression Eqn.	INLET
5639.16		16.00	28.83	16.00	Regression Eqn.	INLET
5639.17		16.30	28.98	16.30	Regression Eqn.	INLET
5639.18		16.60	29.12	16.60	Regression Eqn.	INLET
5639.19		16.90	29.24	16.90	Regression Eqn.	INLET
5639.20		17.20	29.39	17.20	Regression Eqn.	INLET
5639.21		17.50	29.53	17.50	Regression Eqn.	INLET
5639.22		17.70	29.68	17.70	Regression Eqn.	INLET
5639.23		18.00	29.80	18.00	Regression Eqn.	INLET
5639.24		18.30	29.94	18.30	Regression Eqn.	INLET
5639.25		18.60	30.09	18.60	Regression Eqn.	INLET
5639.26		18.90	30.20	18.90	Regression Eqn.	INLET
5639.27		19.20	30.35	19.20	Regression Eqn.	INLET
5639.28		19.50	30.49	19.50	Regression Eqn.	INLET
5639.29		19.80	30.61	19.80	Regression Eqn.	INLET
5639.30		20.10	30.76	20.10	Regression Eqn.	INLET
5639.31		20.40	30.87	20.40	Regression Eqn.	INLET
5639.32		20.70	31.02	20.70	Regression Eqn.	INLET
5639.33		21.00	31.17	21.00	Regression Eqn.	INLET
5639.34		21.30	31.28	21.30	Regression Eqn.	INLET
5639.35		21.60	31.43	21.60	Regression Eqn.	INLET
5639.36		21.90	31.54	21.90	Regression Eqn.	INLET
5639.37		22.20	31.69	22.20	Regression Eqn.	INLET
5639.38		22.50	31.81	22.50	Regression Eqn.	INLET
5639.39		22.80	31.95	22.80	Regression Eqn.	INLET
5639.40		23.10	32.07	23.10	Regression Eqn.	INLET
5639.41		23.40	32.21	23.40	Regression Eqn.	INLET
5639.42		23.70	32.33	23.70	Regression Eqn.	INLET
5639.43		24.00	32.48	24.00	Regression Eqn.	INLET
5639.44		24.30	32.59	24.30	Regression Eqn.	INLET

Project: Eastern Hills South 4-65 17-18 3AH-3DH, 4AH-4DH Pad Basin ID: Culvert A

BOX CONDUIT FLOW (Normal \& Critical Depth Computation)

Project: Eastern Hills South 4-65 17-18 3AH-3DH, 4AH-4DH Pad
Box ID: Culvert B - Open Channel w/ Culvert Cattle Guard (OFF-2)

Design Information (Input)			ft/ft
Box conduit invert slope	So =	0.024	
Box Manning's n-value	$\mathrm{n}=$	0.0130	
Box Width	W =	7.00	
Box Height	H $=$	1.00	
Design discharge	Q =	9.78	
Full-flow capacity (Calculated)			
Full-flow area	Af $=$	7.00	sq ft
Full-flow wetted perimeter	$\mathrm{Pf}=$	16.00	ft
Full-flow capacity	Qf $=$	71.63	cfs
Calculations of Normal Flow Condition			
Normal flow depth (<H)	Yn =	0.22	ft
Flow area	$\mathrm{An}=$	1.56	sq ft
Wetted perimeter	$\mathrm{Pn}=$	7.45	ft
Flow velocity	$\mathrm{Vn}=$	6.27	fps
Discharge	Qn =	9.78	cfs
Percent Full	Flow =	13.7\%	of full flow
Normal Depth Froude Number	$\mathrm{Fr}_{\mathrm{n}}=$	2.34	supercritical
Calculation of Critical Flow Condition			
Critical flow depth	$\mathrm{Yc}=$	0.39	ft
Critical flow area	$\mathrm{Ac}=$	2.75	sq ft
Critical flow velocity	$\mathrm{Vc}=$	3.56	fps
Critical Depth Froude Number	$\mathrm{Fr}_{\mathrm{c}}=$	1.00	

Determination of Culvert Headwater and Outlet Protection

Project: Eastern Hills South 4-65 17-18 3AH-3DH, 4AH-4DH Pad
Basin ID: Culvert B

Soil Type: \qquad
C Sandy
O Non-Sandy
Supercritical Flow! Using Ha to calculate protection type.

Project: Eastern Hills 4-64 17-18 3AH-3DH, 4AH-4DH Pad Basin ID: Culvert B

CIRCULAR CONDUIT FLOW (Normal \& Critical Depth Computation)

Project: Eastern Hills South 4-65 17-18 3AH-3DH, 4AH-4DH Pad
Pipe ID: Culvert C

Design Information (Input)			$\mathrm{ft} / \mathrm{ft}$ inches cfs
Pipe Invert Slope	So =	0.0060	
Pipe Manning's n-value	$\mathrm{n}=$	0.0130	
Pipe Diameter	D =	24.00	
Design discharge	Q =	9.19	
Full-flow Capacity (Calculated)			
Full-flow area	Af $=$	3.14	sq ft
Full-flow wetted perimeter	$\mathrm{Pf}=$	6.28	ft
Half Central Angle	Theta $=$	3.14	radians
Full-flow capacity	Qf =	17.57	cfs
Calculation of Normal Flow Condition			
Half Central Angle (0<Theta<3.14)	Theta $=$	1.60	radians
Flow area	An =	1.62	sq ft
Top width	Tn =	2.00	ft
Wetted perimeter	$\mathrm{Pn}=$	3.20	ft
Flow depth	$\mathrm{Yn}=$	1.03	ft
Flow velocity	$\mathrm{Vn}=$	5.66	fps
Discharge	Qn =	9.19	cfs
Percent Full Flow	Flow $=$	52.3\%	of full flow
Normal Depth Froude Number	$\mathrm{Fr}_{\mathrm{n}}=$	1.11	supercritical
Calculation of Critical Flow Condition			
Half Central Angle (0<Theta-c<3.14)	Theta-c =	1.65	radians
Critical flow area	Ac =	1.74	sq ft
Critical top width	Tc =	1.99	
Critical flow depth	$\mathrm{Yc}=$	1.08	
Critical flow velocity	$\mathrm{Vc}=$	5.29	fps
Critical Depth Froude Number	$\mathrm{Fr}_{\mathrm{c}}=$	1.00	

Determination of Culvert Headwater and Outlet Protection

Project: Eastern Hills South 4-65 17-18 3AH-3DH, 4AH-4DH Pad
Basin ID: Culvert C

Soil Type:
C Sandy
O Non-Sandy
Supercritical Flow! Using Da to calculate protection type.

Project: Eastern Hills South 4-65 17-18 3AH-3DH, 4AH-4DH Pad
Basin ID: Culvert C
Status: \qquad

Design Information (Input):
Circular Culvert: Barrel Diameter in Inches

> Inlet Edge Type (choose from pull-down list)

OR:
Box Culvert: Barrel Height (Rise) in Feet
Barrel Width (Span) in Feet
Inlet Edge Type (choose from pull-down list)
$\begin{aligned} & \text { Height }(\text { Rise })=\square \mathrm{ft.} \\ & \text { Width (Span) }=\square \mathrm{ft.} \\ & \text { Square Edge w/ 30-78 deg. Flared Wingwall }\end{aligned}$
Number of Barrels
Inlet Elevation at Culvert Invert
Outlet Elevation at Culvert Invert OR Slope of Culvert (ft v./ft h.)
Culvert Length in Feet
Manning's Roughness
Bend Loss Coefficient
Exit Loss Coefficient

Design Information (calculated):
Entrance Loss Coefficient

$\mathrm{K}_{\mathrm{e}}=$	0.20
$\mathrm{K}_{\mathrm{f}}=$	0.68
$\mathrm{K}_{\mathrm{s}}=$	1.88
$\mathrm{C}_{\mathrm{d}}=$	0.95
$\mathrm{KE}_{\text {low }}=$	-0.0342

Calculations of Culvert Capacity (output):

Water Surface Elevation (ft., linked)	Tailwater Surface Elevation ft	Culvert Inlet-Control Flowrate cfs	Culvert Outlet-Control Flowrate cfs	Controlling Culvert Flowrate cfs (output)	Inlet Equation Used:	Flow Control Used
5641.38		8.50	9.11	8.50	Regression Eqn.	INLET
5641.39		8.60	9.11	8.60	Regression Eqn.	INLET
5641.40		8.70	9.20	8.70	Regression Eqn.	INLET
5641.41		8.80	9.20	8.80	Regression Eqn.	INLET
5641.42		8.90	9.29	8.90	Regression Eqn.	INLET
5641.43		9.00	9.29	9.00	Regression Eqn.	INLET
5641.44		9.10	9.29	9.10	Regression Eqn.	INLET
5641.45		9.20	9.38	9.20	Regression Eqn.	INLET
5641.46		9.30	9.38	9.30	Regression Eqn.	INLET
5641.47		9.40	9.46	9.40	Regression Eqn.	INLET
5641.48		9.50	9.46	9.46	Regression Eqn.	OUTLET
5641.49		9.60	9.55	9.55	Regression Eqn.	OUTLET
5641.50		9.70	9.55	9.55	Regression Eqn.	OUTLET
5641.51		9.80	9.64	9.64	Regression Eqn.	OUTLET
5641.52		9.90	9.64	9.64	Regression Eqn.	OUTLET
5641.53		10.00	9.64	9.64	Regression Eqn.	OUTLET
5641.54		10.10	9.73	9.73	Regression Eqn.	OUTLET
5641.55		10.30	9.73	9.73	Regression Eqn.	OUTLET
5641.56		10.40	9.81	9.81	Regression Eqn.	OUTLET
5641.57		10.50	9.81	9.81	Regression Eqn.	OUTLET
5641.58		10.60	9.90	9.90	Regression Eqn.	OUTLET
5641.59		10.70	9.90	9.90	Regression Eqn.	OUTLET
5641.60		10.80	9.99	9.99	Regression Eqn.	OUTLET
5641.61		10.90	9.99	9.99	Regression Eqn.	OUTLET
5641.62		11.00	10.08	10.08	Regression Eqn.	OUTLET
5641.63		11.10	10.08	10.08	Regression Eqn.	OUTLET
5641.64		11.20	10.16	10.16	Regression Eqn.	OUTLET
5641.65		11.30	10.25	10.25	Regression Eqn.	OUTLET
5641.66		11.40	10.25	10.25	Regression Eqn.	OUTLET
5641.67		11.60	10.25	10.25	Regression Eqn.	OUTLET

Project: Eastern Hills South 4-65 17-18 3AH-3DH, 4AH-4DH Pad Basin ID: Culvert C

STAGE-DISCHARGE CURVE FOR THE CULVERT

[^0]
CIRCULAR CONDUIT FLOW (Normal \& Critical Depth Computation)

Project: Eastern Hills South 4-65 17-18 3AH-3DH, 4AH-4DH Pad
Pipe ID: Culvert D

Design Information (Input)			$\mathrm{ft} / \mathrm{ft}$ inches cfs
Pipe Invert Slope	So =	0.0130	
Pipe Manning's n-value	$\mathrm{n}=$	0.0130	
Pipe Diameter	D =	12.00	
Design discharge	Q =	2.44	
Full-flow Capacity (Calculated)			
Full-flow area	Af $=$	0.79	sq ft
Full-flow wetted perimeter	$\mathrm{Pf}=$	3.14	ft
Half Central Angle	Theta $=$	3.14	radians
Full-flow capacity	Qf =	4.07	cfs
Calculation of Normal Flow Condition			
Half Central Angle (0<Theta<3.14)	Theta $=$	1.69	radians
Flow area	An =	0.45	sq ft
Top width	Tn =	0.99	ft
Wetted perimeter	$\mathrm{Pn}=$	1.69	ft
Flow depth	$\mathrm{Yn}=$	0.56	ft
Flow velocity	$\mathrm{Vn}=$	5.42	fps
Discharge	Qn =	2.44	cfs
Percent Full Flow	Flow $=$	60.0\%	of full flow
Normal Depth Froude Number	$\mathrm{Fr}_{\mathrm{n}}=$	1.42	supercritical
Calculation of Critical Flow Condition			
Half Central Angle (0<Theta-c<3.14)	Theta-c =	1.92	radians
Critical flow area	Ac =	0.56	sq ft
Critical top width	Tc =	0.94	
Critical flow depth	$\mathrm{Yc}=$	0.67	
Critical flow velocity	$\mathrm{Vc}=$	4.37	fps
Critical Depth Froude Number	$\mathrm{Fr}_{\mathrm{c}}=$	1.00	

Determination of Culvert Headwater and Outlet Protection

Project: Eastern Hills South 4-65 17-18 3AH-3DH, 4AH-4DH Pad
Basin ID: Culvert D

Soil Type:
C Sandy
O Non-Sandy
Supercritical Flow! Using Da to calculate protection type.

Project: Eastern Hills South 4-65 17-18 3AH-3DH, 4AH-4DH Pad Basin ID: Culvert D

Project Name: Eastern Hills South 4-65 17-18 3AH-3DH, 4AH-4DH Pad Location: Aurora, Colorado

Available Storage Calculation:

$$
\text { Volume }=\frac{D}{3}\left(A_{B}+A_{T}+\sqrt{A_{B} A_{T}}\right)
$$

where:

$\mathrm{D}=$	incremental depth (ft)
$\mathrm{A}_{1}=$	Bottom Area for increment $\left(\mathrm{ft}^{2}\right)$
$\mathrm{A}_{2}=$	Top Area for increment $\left(\mathrm{ft}^{2}\right)$

Design Parameters:

Bottom Width:	78 ft
Bottom Length:	156 ft
Bottom Elevation:	5637.00

Elevation	Surface Area	$\mathbf{(1 / 3})^{*} \mathbf{A}+\mathbf{B}+(\mathbf{A * B})^{\wedge} \mathbf{0 . 5}$	Incremental Depth	Incramental Volume	Cumulative Volume
	(square feet)		(feet)	(cubic feet)	(cubic feet)
5637.00	12168	0.00	0.00	0.00	-
5637.25	12521	12344.08	0.25	3086.02	$3,086.0$
5637.50	12879	12699.58	0.25	3174.89	$6,260.9$
5638.00	13608	13241.83	0.50	6620.91	$12,881.8$
5638.50	14355	13979.84	0.50	6989.92	$19,871.7$

Available Storage at Spillway:
19,872 cf

Required Storage Calculation:

Disturbance Area (11.45 ac .) - Reclaimed Pad (4.42 ac.) $=7.03 \mathrm{ac}$.
This 7.03 acre tributary area is comprised of approximately 6.48 acres of reclaimed grass and seeded stockpiles (10% impervious) in addition to the approximately 0.55 acre sediment basin (90% impervious). Table 1 of the COA Storm Drainage Design and Technical Criteria Manual was used to determine the percent impervious estimates.
Using UDFCD Table SB-1: (6.48 ac. X $800 \mathrm{cf} / \mathrm{ac}.)+(0.55 \mathrm{ac} . \mathrm{X} 5,300 \mathrm{cf} / \mathrm{ac})=8,.099 \mathrm{cf}$

Required Storage Volume:

8,099 cf

Stormwater Detention and Infiltration Design Data Sheet

Stormwater Facility Name: Eastern Hills South 4-65 17-18 3AH-3DH, 4AH-4DH Pad Sediment Basin

Facility Location \& Jurisdiction: Section 17, T4S, R65W, City of Aurora, Arapahoe County, Colorado

User Input: Watershed Characteristics		
Watershed Slope =	0.011	$\mathrm{ft} / \mathrm{ft}$
Watershed Length =	865	ft
Watershed Area =	7.03	acres
Watershed Imperviousness $=$	10.0\%	percent
Percentage Hydrologic Soil Group A =		percent
Percentage Hydrologic Soil Group B =	100.0\%	percent
Percentage Hydrologic Soil Groups C/D =		percent

Location for 1-hr Rainfall Depths (use dropdown):
Aurora - Municipal Center

User Defined Stage [ft]	User Defined Area [$\mathrm{ft} \wedge$ 2]	User Defined Stage [ft]	User Defined Discharge [cfs]
9.00	12,168.0)	8.08	8,00
≥ 0.25	12,521.0	0.25	0.13
0.50	12,879.0	0.50	0.30
0.75	13,241.0	0.75	0.48
1.00	13,608.0	1.00	$0.64<$
¢ 1.50	14,355.0	1.50	1.05
\%on	15,1200	1200	入13.79

After completing and printing this worksheet to a pdf, go to: https://maperture.digitaldataservices.com/gvh/?viewer=cswdif create a new stormwater facility, and attach the pdf of this worksheet to that record.

Routed Hydrograph Results

Routed Hydrograph Results						
Design Storm Return Period = One-Hour Rainfall Depth =	WQCV	2 Year	5 Year	10 Year	50 Year	100 Year
	0.53	0.87	1.14	1.39	2.08	2.42
Calculated Runoff Volume =	0.039	0.033	0.054	0.128	0.547	0.776
OPTIONAL Override Runoff Volume $=$						
Inflow Hydrograph Volume =	0.039	0.033	0.053	0.127	0.546	0.775
Time to Drain 97\% of Inflow Volume =	24.0	24.0	24.0	23.9	22.4	20.5
Time to Drain 99\% of Inflow Volume =	31.1	31.1	31.1	31.0	29.6	27.7
Maximum Ponding Depth $=$	0.11	0.10	0.15	0.36	1.43	1.65
Maximum Ponded Area $=$	0.28	0.28	0.28	0.29	0.33	0.33
Maximum Volume Stored $=$	0.032	0.026	0.043	0.103	0.434	0.505

Stormwater Detention and Infiltration Design Data Sheet

Project: Eastern Hills South 4-65 17-18 3AH-3DH, 4AH-4DH Pad
Basin ID: Orifice Holes
5637.256

Watershed Design Information (Input

Outlet Design Information (Output)

$$
\begin{aligned}
\text { Design Volume }(\text { WQCV } / 12 * \text { Area } * 1.2) \text { Vol } & \begin{array}{l}
0.128 \text { acre-feet } \\
\text { Outtet area per row, Ao }
\end{array}=\begin{array}{l}
0.12 \\
\text { square inch }
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Total opening area at each row based on user-input above, } A \mathrm{AO}=8.120 \\
& \text { Total opening area at each row based on user-input above, } \mathrm{AO}=8.056 \text { square inche }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Water Quality Capture Volume, WQCV }=0.059 \text { watershed inche } \\
& \begin{array}{l}
\text { Water Quality Capture Volume (WOCV) }=\quad 0.034 \text { acre-feet } \\
\mathbf{0 . 1 2 8} \text { acre-fee }
\end{array}
\end{aligned}
$$

> WQCV Design Volume (Inpu | Catchment Area, A | $=7.03$ acres |
| ---: | :--- |
| Depth at WOCV outlet above lowest perforation, $H=\begin{array}{ll}\text { for }\end{array}$ | |
| 1.50 | |
| feet | | Vertical distance between rows, $h=4.00$ inches

$$
\begin{aligned}
& \begin{aligned}
\text { Diameter of holes, } \mathrm{D} & =\square \text { inches } \\
\text { Number of holes per row, } \mathrm{N} & =\square \mathrm{OR}
\end{aligned} \\
& \begin{array}{l}
\text { Height of slot, } \mathrm{H}=2.00 \text { inches } \\
\text { Width of slot, } \mathrm{W}=2.00 \text { inches }
\end{array} \\
& \text { Time to Drain the Pond }=\frac{72}{} \text { hours }
\end{aligned}
$$

Project: Eastern Hills South 4-65 17-18 3AH-3DH, 4AH-4DH Pad
Basin ID: Orifice Holes

STAGE-DISCHARGE CURVE FOR THE WQCV OUTLET STRUCTURE

STAGE-DISCHARGE SIZING OF THE SPILLWAY

Project: Eastern Hills South 4-65 17-18 3AH-3DH, 4AH-4DH Pad
Basin ID: Sediment Basin - Spillway

Design Information (input):

Bottom Length of Weir Angle of Side Slope Weir Elev. for Weir Crest Coef. for Rectangular Weir
Coef. for Trapezoidal Weir

L	$=11.00$	feet
Angle	$=15.96$	degrees
		75
EL. Crest	$=5,638.50$	feet
C_{w}	$=3.00$	
C_{t}	$=3.00$	

Calculation of Spillway Capacity (output):

Water Surface Elevation ft . (linked)	Rect. Weir Flowrate cfs (output)	Triangle Weir Flowrate cfs (output)	Total Spillway Release cfs (output)	Total Pond Release cfs (output)
5637.00	0.00	0.00	0.00	0.00
5637.25	0.00	0.00	0.00	0.00
5637.50	0.00	0.00	0.00	0.00
5638.00	0.00	0.00	0.00	0.00
5638.50	0.00	0.00	0.00	0.00
5639.00	11.67	2.12	13.79	13.79
\#N/A	\#N/A	\#N/A	\#N/A	\#N/A
\#N/A	\#N/A	\#N/A	\#N/A	\#N/A
\#N/A	\#N/A	\#N/A	\#N/A	\#N/A
\#N/A	\#N/A	\#N/A	\#N/A	\#N/A
\#N/A	\#N/A	\#N/A	\#N/A	\#N/A
\#N/A	\#N/A	\#N/A	\#N/A	\#N/A
\#N/A	\#N/A	\#N/A	\#N/A	\#N/A
\#N/A	\#N/A	\#N/A	\#N/A	\#N/A
\#N/A	\#N/A	\#N/A	\#N/A	\#N/A
\#N/A	\#N/A	\#N/A	\#N/A	\#N/A
\#N/A	\#N/A	\#N/A	\#N/A	\#N/A
\#N/A	\#N/A	\#N/A	\#N/A	\#N/A
\#N/A	\#N/A	\#N/A	\#N/A	\#N/A
\#N/A	\#N/A	\#N/A	\#N/A	\#N/A
\#N/A	\#N/A	\#N/A	\#N/A	\#N/A
\#N/A	\#N/A	\#N/A	\#N/A	\#N/A
\#N/A	\#N/A	\#N/A	\#N/A	\#N/A
\#N/A	\#N/A	\#N/A	\#N/A	\#N/A
\#N/A	\#N/A	\#N/A	\#N/A	\#N/A
\#N/A	\#N/A	\#N/A	\#N/A	\#N/A
\#N/A	\#N/A	\#N/A	\#N/A	\#N/A
\#N/A	\#N/A	\#N/A	\#N/A	\#N/A
\#N/A	\#N/A	\#N/A	\#N/A	\#N/A
\#N/A	\#N/A	\#N/A	\#N/A	\#N/A
\#N/A	\#N/A	\#N/A	\#N/A	\#N/A
\#N/A	\#N/A	\#N/A	\#N/A	\#N/A
\#N/A	\#N/A	\#N/A	\#N/A	\#N/A
\#N/A	\#N/A	\#N/A	\#N/A	\#N/A
\#N/A	\#N/A	\#N/A	\#N/A	\#N/A
\#N/A	\#N/A	\#N/A	\#N/A	\#N/A
\#N/A	\#N/A	\#N/A	\#N/A	\#N/A
\#N/A	\#N/A	\#N/A	\#N/A	\#N/A
\#N/A	\#N/A	\#N/A	\#N/A	\#N/A
\#N/A	\#N/A	\#N/A	\#N/A	\#N/A
\#N/A	\#N/A	\#N/A	\#N/A	\#N/A
\#N/A	\#N/A	\#N/A	\#N/A	\#N/A
\#N/A	\#N/A	\#N/A	\#N/A	\#N/A
\#N/A	\#N/A	\#N/A	\#N/A	\#N/A

STAGE-DISCHARGE SIZING OF THE SPILLWAY

Project: Eastern Hills South 4-65 17-18 3AH-3DH, 4AH-4DH Pad
Basin ID: Sediment Basin - Spillway

STAGE-STORAGE-DISCHARGE CURVES FOR THE POND

[^0]: - Stage-Discharge
 \square Inlet Control
 \triangle Outlet Control

